Newer
Older
// SPDX-FileCopyrightText: Deutsches Elektronen-Synchrotron DESY, MSK, ChimeraTK Project <chimeratk-support@desy.de>
// SPDX-License-Identifier: LGPL-3.0-or-later
#include "ConnectionMaker.h"
#include "Application.h"
#include "ConsumingFanOut.h"
#include "DebugPrintAccessorDecorator.h"
#include "DeviceManager.h"
#include "ExceptionHandlingDecorator.h"
#include "FanOut.h"
#include "TestableMode.h"
#include "ThreadedFanOut.h"
#include "TriggerFanOut.h"
#include <ChimeraTK/NDRegisterAccessor.h>
#include <memory>
namespace ChimeraTK {
Martin Christoph Hierholzer
committed
/*********************************************************************************************************************/
NetworkVisitor::NetworkInformation NetworkVisitor::checkNetwork(Model::ProcessVariableProxy& proxy) {
NetworkInformation net{&proxy};
// Sanity check for the type and lengths of the nodes, extract the feeding node if any
for(const auto& node : proxy.getNodes()) {
if(node.getDirection().withReturn) {
net.numberOfBidirectionalNodes++;
}
if(node.getDirection().dir == VariableDirection::feeding) {
std::stringstream ss;
node.dump(ss);
debug(" Feeder: ", ss.str());
if(net.feeder.getType() == NodeType::invalid) {
net.feeder = node;
}
else {
throw ChimeraTK::logic_error(
"Variable network " + proxy.getFullyQualifiedPath() + " has more than one feeder");
}
// feeding a constant (created with ApplicationModule::constant()) is not allowed
if(boost::starts_with(node.getName(), ApplicationModule::namePrefixConstant)) {
throw ChimeraTK::logic_error("Feeding a constant is not allowed (" + node.getQualifiedName() + ")");
}
}
else if(node.getDirection().dir == VariableDirection::consuming) {
std::stringstream ss;
node.dump(ss);
debug(" Consumer: ", ss.str());
net.consumers.push_back(node);
if(node.getMode() == UpdateMode::poll) {
net.numberOfPollingConsumers++;
}
}
else {
// There should not be an invalid direction variable in here. FIXME: is that true?
assert(false);
}
if(*net.valueType == typeid(AnyType)) {
net.valueType = &node.getValueType();
}
else {
if(*net.valueType != node.getValueType() && node.getValueType() != typeid(AnyType)) {
throw ChimeraTK::logic_error("Variable network " + proxy.getFullyQualifiedPath() +
" contains nodes with different types: " + net.valueType->name() + " != " + node.getValueType().name());
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
}
}
if(net.valueLength == 0) {
net.valueLength = node.getNumberOfElements();
}
else {
if(net.valueLength != node.getNumberOfElements() && node.getNumberOfElements() != 0) {
throw ChimeraTK::logic_error(
"Variable network " + proxy.getFullyQualifiedPath() + " contains nodes with different sizes");
}
}
// Get unit and description of network from nodes. First one wins
if(net.description.empty()) {
net.description = node.getDescription();
}
if(net.unit.empty()) {
net.unit = node.getUnit();
}
}
// If we are left with an undefined network at this point this should be trigger network and can be assumed
// to be void
if(*net.valueType == typeid(AnyType)) {
net.valueType = &typeid(ChimeraTK::Void);
}
// For void, a length of 0 is ok, otherwise this is not allowed
if(net.valueLength == 0 && *net.valueType != typeid(ChimeraTK::Void)) {
throw ChimeraTK::logic_error("Cannot determine length of network " + proxy.getFullyQualifiedPath());
}
if(net.feeder.getType() == NodeType::invalid && net.consumers.empty()) {
throw ChimeraTK::logic_error(
"Variable network '" + proxy.getFullyQualifiedPath() + "' is empty. Must not happen");
return net;
}
/*********************************************************************************************************************/
NetworkVisitor::NetworkInformation NetworkVisitor::checkAndFinaliseNetwork(Model::ProcessVariableProxy& proxy) {
// This will do two things:
// - Check the network consistency
// - Return feeder and consumers, if available
auto info = checkNetwork(proxy);
finaliseNetwork(info);
return info;
}
/*********************************************************************************************************************/
void NetworkVisitor::finaliseNetwork(NetworkInformation& net) {
// check whether this is a constant created via ApplicationModule::constant()
bool isConstant{net.consumers.size() > 0 &&
boost::starts_with(net.consumers.front().getName(), ApplicationModule::namePrefixConstant)};
if(isConstant) {
assert(!net.feeder.isValid());
net.feeder =
VariableNetworkNode{&net.consumers.front().getValueType(), true, net.consumers.front().getNumberOfElements()};
// Extract value from constant name. The format of a constant path name is:
// /@CONST@/<type>/<uniqueId>/<value>
RegisterPath name(net.consumers.front().getName());
auto components = name.getComponents();
assert(components.size() == 4);
std::string stringValue = components[3];
callForType(net.consumers.front().getValueType(), [&](auto t) {
using UserType = decltype(t);
net.feeder.setConstantValue(userTypeToUserType<UserType>(stringValue));
});
}
bool neededFeeder{false};
if(not net.feeder.isValid()) {
debug(" No feeder in network, creating ControlSystem feeder ", net.proxy->getFullyQualifiedPath());
debug(" Bi-directional consumers: ", net.numberOfBidirectionalNodes);
// If we have exactly one bi-directional consumer, mark this CS feeder as bidirectional as well
net.feeder = VariableNetworkNode(net.proxy->getFullyQualifiedPath(),
VariableDirection{VariableDirection::feeding, net.numberOfBidirectionalNodes == 1}, *net.valueType,
net.valueLength);
neededFeeder = true;
}
assert(net.feeder.isValid());
if(not neededFeeder and not isConstant) {
// Only add CS consumer if we did not previously add CS feeder, we will add one or the other, but never both
// Also we will not add CS consumers for constants.
debug(" Network has a non-CS feeder, can create additional ControlSystem consumer");
net.consumers.push_back(VariableNetworkNode(
net.proxy->getFullyQualifiedPath(), {VariableDirection::consuming, false}, *net.valueType, net.valueLength));
}
assert(not net.consumers.empty());
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// register PVs with the control system adapter
callForType(*net.valueType, [&](auto t) {
using UserType = decltype(t);
for(auto& node : net.consumers) {
if(node.getType() != NodeType::ControlSystem) {
continue;
}
this->createProcessVariable<UserType>(
node, net.valueLength, net.unit, net.description, {AccessMode::wait_for_new_data});
}
if(net.feeder.getType() == NodeType::ControlSystem) {
AccessModeFlags flags = {AccessMode::wait_for_new_data};
if(net.consumers.size() == 1) {
auto consumer = net.consumers.front();
if(consumer.getType() == NodeType::Application && consumer.getMode() == UpdateMode::poll) {
flags = {};
}
}
AccessModeFlags{};
this->createProcessVariable<UserType>(net.feeder, net.valueLength, net.unit, net.description, flags);
}
});
}
/*********************************************************************************************************************/
template<typename... Args>
void NetworkVisitor::debug(Args&&... args) {
if(not _debugConnections) return;
// FIXME: Use the proper logging mechanism once in place
// https://redmine.msktools.desy.de/issues/8305
// Fold expression printer from https://en.cppreference.com/w/cpp/language/fold
(std::cout << ... << args) << std::endl;
}
/*********************************************************************************************************************/
/* ConnectionMaker implementations */
/*********************************************************************************************************************/
void ConnectionMaker::connectNetwork(Model::ProcessVariableProxy& proxy) {
auto path = proxy.getFullyQualifiedPath();
debug("Network found: ", path);
auto triggerFinder = [&](auto p) {
auto deviceTrigger = p.getTrigger();
if(deviceTrigger.isValid()) {
debug(" Found Feeding device ", p.getAliasOrCdd(), " with trigger ", p.getTrigger().getFullyQualifiedPath());
}
else {
debug(" Feeding from device ", p.getAliasOrCdd(), " but without any trigger");
}
return std::make_pair(deviceTrigger, p);
};
Model::ProcessVariableProxy trigger{};
Model::DeviceModuleProxy device{};
// Use external trigger if feeder is poll-type and number of poll-type consumers != 1.
// If there is exactly one poll-type consumer, transfers will be triggered by that consumer.
if(_networks.at(path).feeder.getMode() == UpdateMode::poll && _networks.at(path).numberOfPollingConsumers != 1) {
_networks.at(path).useExternalTrigger = true;
std::tie(trigger, device) =
proxy.visit(triggerFinder, Model::adjacentInSearch, Model::keepPvAccess, Model::keepDeviceModules,
Model::returnFirstHit(std::make_pair(Model::ProcessVariableProxy{}, Model::DeviceModuleProxy{})));
if(!trigger.isValid()) {
throw ChimeraTK::logic_error(
"Poll-Type feeder " + _networks.at(path).feeder.getName() + " needs trigger, but none provided");
auto constantFeeder = _networks.at(path).feeder.getType() == NodeType::Constant;
if(_networks.at(path).feeder.hasImplementation() && !constantFeeder) {
debug(" Creating fixed implementation for feeder '", _networks.at(path).feeder.getName(), "'...");
if(_networks.at(path).consumers.size() == 1 && !_networks.at(path).useExternalTrigger) {
debug(" One consumer without external trigger, creating direct connection");
makeDirectConnectionForFeederWithImplementation(_networks.at(path));
}
else {
// More than one consuming node
debug(" More than one consuming node or having external trigger, setting up FanOut");
makeFanOutConnectionForFeederWithImplementation(_networks.at(path), device, trigger);
}
}
else if(not constantFeeder) {
debug(" Feeder '", _networks.at(path).feeder.getName(), "' does not require a fixed implementation.");
assert(not trigger.isValid());
makeConnectionForFeederWithoutImplementation(_networks.at(path));
}
else { // constant feeder
debug(" Using constant feeder '", _networks.at(path).feeder.getName(), "'.");
makeConnectionForConstantFeeder(_networks.at(path));
for(auto& node : _networks.at(path).consumers) {
// A variable network is a tree-like network of VariableNetworkNodes (one feeder and one or more multiple
// consumers) A circular network is a list of modules (EntityOwners) which have a circular dependency
auto circularNetwork = node.scanForCircularDepencency();
if(not circularNetwork.empty()) {
auto circularNetworkHash = boost::hash_range(circularNetwork.begin(), circularNetwork.end());
_app.circularDependencyNetworks[circularNetworkHash] = circularNetwork;
_app.circularNetworkInvalidityCounters[circularNetworkHash] = 0;
}
}
Martin Christoph Hierholzer
committed
/*********************************************************************************************************************/
void ConnectionMaker::finalise() {
debug("Calling finalise()...");
_app.getTestableMode()._debugDecorating = _debugConnections;
debug(" Preparing trigger networks");
debug(" Collecting triggers");
// Collect all triggers, add a TriggerReceiver placeholder for every device associated with that trigger
auto triggerCollector = [&](auto proxy) {
auto trigger = proxy.getTrigger();
if(not trigger.isValid()) return;
triggers.insert(trigger);
proxy.addVariable(trigger, VariableNetworkNode(proxy.getAliasOrCdd(), 0));
};
_app.getModel().visit(triggerCollector, Model::depthFirstSearch, Model::keepDeviceModules);
debug(" Finalising trigger networks");
auto info = checkAndFinaliseNetwork(trigger);
_triggerNetworks.insert(trigger.getFullyQualifiedPath());
_networks.insert({trigger.getFullyQualifiedPath(), info});
debug(" trigger network: " + trigger.getFullyQualifiedPath());
debug(" Finalising other networks");
auto connectingVisitor = [&](auto proxy) {
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
if(_triggerNetworks.count(proxy.getFullyQualifiedPath()) != 0) {
return;
}
_networks.insert({proxy.getFullyQualifiedPath(), checkAndFinaliseNetwork(proxy)});
};
// ChimeraTK::Model::keepParenthood - small optimisation for iterating the model only once
_app.getModel().visit(connectingVisitor, ChimeraTK::Model::depthFirstSearch, ChimeraTK::Model::keepProcessVariables,
ChimeraTK::Model::keepParenthood);
}
/*********************************************************************************************************************/
void ConnectionMaker::connect() {
debug("Calling connect()...");
_app.getTestableMode()._debugDecorating = _debugConnections;
// Improve: Likely no need to distinguish trigger and normal networks here... Also just iterate _networks instead
// of the model!
debug(" Connecting trigger networks");
for(auto trigger : triggers) {
connectNetwork(trigger);
}
debug(" Connecting other networks");
auto connectingVisitor = [&](auto proxy) {
if(_triggerNetworks.count(proxy.getFullyQualifiedPath()) != 0) {
return;
}
connectNetwork(proxy);
};
// ChimeraTK::Model::keepParenthood - small optimisation for iterating the model only once
_app.getModel().visit(connectingVisitor, ChimeraTK::Model::depthFirstSearch, ChimeraTK::Model::keepProcessVariables,
ChimeraTK::Model::keepParenthood);
}
/*********************************************************************************************************************/
void ConnectionMaker::makeDirectConnectionForFeederWithImplementation(NetworkInformation& net) {
debug(" Making direct connection for feeder with implementation");
callForType(*net.valueType, [&](auto t) {
using UserType = decltype(t);
auto consumer = net.consumers.front();
boost::shared_ptr<ChimeraTK::NDRegisterAccessor<UserType>> feedingImpl;
if(net.feeder.getType() == NodeType::Device) {
feedingImpl = createDeviceVariable<UserType>(net.feeder);
}
else if(net.feeder.getType() == NodeType::ControlSystem) {
feedingImpl = getProcessVariable<UserType>(net.feeder);
}
else {
throw ChimeraTK::logic_error("Unexpected node type!"); // LCOV_EXCL_LINE (assert-like)
}
// We need a threaded fan-out most of the time, unless the consumer is an application node
// Then we have a thread in the application module already
auto needsFanOut{true};
boost::shared_ptr<ChimeraTK::NDRegisterAccessor<UserType>> consumingImpl;
switch(consumer.getType()) {
case NodeType::Application:
debug(" Node type is Application");
consumer.setAppAccessorImplementation(feedingImpl);
needsFanOut = false;
break;
case NodeType::ControlSystem:
debug(" Node type is ControlSystem");
consumingImpl = getProcessVariable<UserType>(consumer);
break;
case NodeType::Device:
consumingImpl = createDeviceVariable<UserType>(consumer);
debug(" Node type is Device");
break;
case NodeType::TriggerReceiver: {
needsFanOut = false;
debug(" Node type is TriggerReceiver (Alias = " + consumer.getDeviceAlias() + ")");
// create the trigger fan out and store it in the map and the internalModuleList
auto triggerFanOut =
boost::make_shared<TriggerFanOut>(feedingImpl, *_app.getDeviceManager(consumer.getDeviceAlias()));
_app.internalModuleList.push_back(triggerFanOut);
net.triggerImpl[consumer.getDeviceAlias()] = triggerFanOut;
} break;
default:
throw ChimeraTK::logic_error("Unexpected node type!");
}
if(needsFanOut) {
assert(consumingImpl != nullptr);
auto consumerImplPair = ConsumerImplementationPairs<UserType>{{consumingImpl, consumer}};
auto fanOut = boost::make_shared<ThreadedFanOut<UserType>>(feedingImpl, consumerImplPair);
_app.internalModuleList.push_back(fanOut);
}
});
}
/*********************************************************************************************************************/
void ConnectionMaker::makeFanOutConnectionForFeederWithImplementation(
NetworkInformation& net, const Model::DeviceModuleProxy& device, const Model::ProcessVariableProxy& trigger) {
// TODO: needs sanity check?
auto feederTrigger = !net.useExternalTrigger && net.feeder.getMode() == UpdateMode::push;
assert(feederTrigger || net.useExternalTrigger || net.numberOfPollingConsumers == 1);
callForType(*net.valueType, [&](auto t) {
using UserType = decltype(t);
boost::shared_ptr<ChimeraTK::NDRegisterAccessor<UserType>> feedingImpl;
if(net.feeder.getType() == NodeType::Device) {
feedingImpl = createDeviceVariable<UserType>(net.feeder);
}
else if(net.feeder.getType() == NodeType::ControlSystem) {
feedingImpl = getProcessVariable<UserType>(net.feeder);
}
else {
throw ChimeraTK::logic_error("Unexpected node type!"); // LCOV_EXCL_LINE (assert-like)
}
boost::shared_ptr<FanOut<UserType>> fanOut;
boost::shared_ptr<ConsumingFanOut<UserType>> consumingFanOut;
// Fanouts need to know the consumers on construction, so we collect them first
auto consumerImplementationPairs = setConsumerImplementations<UserType>(net);
if(net.useExternalTrigger) {
assert(trigger.isValid());
debug(" Using external trigger (Alias = " + device.getAliasOrCdd() + ")");
auto& triggerNet = _networks.at(trigger.getFullyQualifiedPath());
auto jt = triggerNet.triggerImpl.find(device.getAliasOrCdd());
assert(jt != triggerNet.triggerImpl.end());
// if external trigger is enabled, use externally triggered threaded
// FanOut. Create one per external trigger impl.
jt->second->addNetwork(feedingImpl, consumerImplementationPairs);
}
else if(feederTrigger) {
debug(" Using feeder trigger.");
// if the trigger is provided by the pushing feeder, use the threaded
// version of the FanOut to distribute new values immediately to all
// consumers. Depending on whether we have a return channel or not, pick
// the right implementation of the FanOut
boost::shared_ptr<ThreadedFanOut<UserType>> threadedFanOut;
if(not net.feeder.getDirection().withReturn) {
debug(" No return channel");
threadedFanOut = boost::make_shared<ThreadedFanOut<UserType>>(feedingImpl, consumerImplementationPairs);
}
else {
debug(" With return channel");
threadedFanOut =
boost::make_shared<ThreadedFanOutWithReturn<UserType>>(feedingImpl, consumerImplementationPairs);
}
_app.internalModuleList.push_back(threadedFanOut);
fanOut = threadedFanOut;
}
else {
// Trigger by single poll-type consumer
debug(" No trigger, using consuming fanout.");
consumingFanOut = boost::make_shared<ConsumingFanOut<UserType>>(feedingImpl, consumerImplementationPairs);
// TODO Is this correct? we already added all consumer as slaves in the fanout constructor.
// Maybe assert that we only have a single poll-type node (is there a check in checkConnections?)
for(const auto& consumer : net.consumers) {
if(consumer.getMode() == UpdateMode::poll) {
consumer.setAppAccessorImplementation<UserType>(consumingFanOut);
break;
}
}
}
});
}
/*********************************************************************************************************************/
template<typename UserType>
void NetworkVisitor::createProcessVariable(const VariableNetworkNode& node, size_t length, const std::string& unit,
const std::string& description, AccessModeFlags flags) {
// Implementation note: This function needs to create the PV in the control system PV manager, so the control system
// adapter already sees the PVs before calling run().
// It also has to decorate the implementation with the testable mode decorator (if in testable mode), because this
// must happen before the TestFacility hands out decorated PVs to the tests.
// If we are generating the XML file only, there will be no PV manager and we will not use the PVs later anyway,
// so simply do nothing in that case. Note that Application::initialise() checks for the presence of a PV manager,
// so if the real application starts we have the guarantee of the presence of a PV manager.
if(!_app.getPVManager()) {
return;
}
SynchronizationDirection dir;
if(node.getDirection().withReturn) {
dir = SynchronizationDirection::bidirectional;
}
else if(node.getDirection().dir == VariableDirection::feeding) {
dir = SynchronizationDirection::controlSystemToDevice;
}
else {
dir = SynchronizationDirection::deviceToControlSystem;
}
debug(" calling createProcessArray()");
auto pv = _app.getPVManager()->createProcessArray<UserType>(
dir, node.getPublicName(), length, unit, description, {}, 3, flags);
boost::shared_ptr<ChimeraTK::NDRegisterAccessor<UserType>> pvImpl = pv;
if(node.getDirection().dir == VariableDirection::feeding) {
// Wrap push-type CS->App PVs in testable mode decorator
if(flags.has(AccessMode::wait_for_new_data)) {
auto varId = detail::TestableMode::getNextVariableId();
_app.pvIdMap[pv->getUniqueId()] = varId;
pvImpl = _app.getTestableMode().decorate<UserType>(
pvImpl, detail::TestableMode::DecoratorType::READ, "ControlSystem:" + node.getPublicName(), varId);
}
// poll-type CS->App PVs are not wrapped
else if(dir == SynchronizationDirection::bidirectional) {
// App->CS PVs are only wrapped into testablemode decorator if they are bidirectional
auto varId = detail::TestableMode::getNextVariableId();
_app.pvIdMap[pv->getUniqueId()] = varId;
pvImpl = _app.getTestableMode().decorate<UserType>(
pvImpl, detail::TestableMode::DecoratorType::READ, "ControlSystem:" + node.getPublicName());
}
boost::fusion::at_key<UserType>(_decoratedPvImpls.table)[node.getPublicName()] = pvImpl;
}
/*********************************************************************************************************************/
template<typename UserType>
boost::shared_ptr<ChimeraTK::NDRegisterAccessor<UserType>> ConnectionMaker::getProcessVariable(
const VariableNetworkNode& node) {
return boost::fusion::at_key<UserType>(_decoratedPvImpls.table).at(node.getPublicName());
}
/*********************************************************************************************************************/
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
template<typename UserType>
boost::shared_ptr<NDRegisterAccessor<UserType>> ConnectionMaker::createDeviceVariable(
VariableNetworkNode const& node) {
const auto& deviceAlias = node.getDeviceAlias();
const auto& registerName = node.getRegisterName();
auto direction = node.getDirection();
auto mode = node.getMode();
auto nElements = node.getNumberOfElements();
auto dev = _app._deviceManagerMap.at(deviceAlias)->getDevice().getBackend();
// use wait_for_new_data mode if push update mode was requested
// Feeding to the network means reading from a device to feed it into the network.
AccessModeFlags flags{};
if(mode == UpdateMode::push && direction.dir == VariableDirection::feeding) flags = {AccessMode::wait_for_new_data};
// obtain the register accessor from the device
auto accessor = dev->getRegisterAccessor<UserType>(registerName, nElements, 0, flags);
// Receiving accessors should be faulty after construction,
// see data validity propagation spec 2.6.1
if(node.getDirection().dir == VariableDirection::feeding) {
accessor->setDataValidity(DataValidity::faulty);
}
// decorate push-type feeders with testable mode decorator, if needed
if(mode == UpdateMode::push && direction.dir == VariableDirection::feeding) {
accessor = _app.getTestableMode().decorate(accessor, detail::TestableMode::DecoratorType::READ);
}
return boost::make_shared<ExceptionHandlingDecorator<UserType>>(accessor, node);
}
/*********************************************************************************************************************/
template<typename UserType>
ConsumerImplementationPairs<UserType> ConnectionMaker::setConsumerImplementations(NetworkInformation& net) {
debug(" setConsumerImplementations");
ConsumerImplementationPairs<UserType> consumerImplPairs;
for(const auto& consumer : net.consumers) {
typename ConsumerImplementationPairs<UserType>::value_type pair{
boost::shared_ptr<ChimeraTK::NDRegisterAccessor<UserType>>(), consumer};
if(consumer.getType() == NodeType::Application) {
debug(" Node type is Application: " + consumer.getQualifiedName());
auto impls = createApplicationVariable<UserType>(consumer);
consumer.setAppAccessorImplementation<UserType>(impls.second);
pair = std::make_pair(impls.first, consumer);
}
else if(consumer.getType() == NodeType::ControlSystem) {
debug(" Node type is ControlSystem");
auto impl = getProcessVariable<UserType>(consumer);
pair = std::make_pair(impl, consumer);
}
else if(consumer.getType() == NodeType::Device) {
auto impl = createDeviceVariable<UserType>(consumer);
pair = std::make_pair(impl, consumer);
}
else if(consumer.getType() == NodeType::TriggerReceiver) {
debug(" Node type is TriggerReceiver");
auto triggerConnection = createApplicationVariable<UserType>(net.feeder);
auto triggerFanOut = boost::make_shared<TriggerFanOut>(
triggerConnection.second, *_app.getDeviceManager(consumer.getDeviceAlias()));
_app.internalModuleList.push_back(triggerFanOut);
net.triggerImpl[consumer.getDeviceAlias()] = triggerFanOut;
pair = std::make_pair(triggerConnection.first, consumer);
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
}
else {
throw ChimeraTK::logic_error("Unexpected node type!"); // LCOV_EXCL_LINE (assert-like)
}
consumerImplPairs.push_back(pair);
}
return consumerImplPairs;
}
/*********************************************************************************************************************/
template<typename UserType>
std::pair<boost::shared_ptr<ChimeraTK::NDRegisterAccessor<UserType>>,
boost::shared_ptr<ChimeraTK::NDRegisterAccessor<UserType>>>
ConnectionMaker::createApplicationVariable(VariableNetworkNode const& node, VariableNetworkNode const& consumer) {
// obtain the meta data
size_t nElements = node.getNumberOfElements();
std::string name = node.getName();
assert(not name.empty());
AccessModeFlags flags = {};
if(consumer.isValid()) {
if(consumer.getMode() == UpdateMode::push) flags = {AccessMode::wait_for_new_data};
}
else {
if(node.getMode() == UpdateMode::push) flags = {AccessMode::wait_for_new_data};
}
// create the ProcessArray for the proper UserType
std::pair<boost::shared_ptr<ChimeraTK::NDRegisterAccessor<UserType>>,
boost::shared_ptr<ChimeraTK::NDRegisterAccessor<UserType>>>
pvarPair;
if(consumer.isValid()) {
assert(node.getDirection().withReturn == consumer.getDirection().withReturn);
}
if(!node.getDirection().withReturn) {
pvarPair = createSynchronizedProcessArray<UserType>(
nElements, name, node.getUnit(), node.getDescription(), {}, 3, flags);
}
else {
pvarPair = createBidirectionalSynchronizedProcessArray<UserType>(
nElements, name, node.getUnit(), node.getDescription(), {}, 3, flags);
}
assert(pvarPair.first->getName() != "");
assert(pvarPair.second->getName() != "");
if(flags.has(AccessMode::wait_for_new_data)) {
pvarPair = _app.getTestableMode().decorate(pvarPair, node, consumer);
}
// if debug mode was requested for either node, decorate both accessors
if(_app.debugMode_variableList.count(node.getUniqueId()) ||
(consumer.getType() != NodeType::invalid && _app.debugMode_variableList.count(consumer.getUniqueId()))) {
if(consumer.getType() != NodeType::invalid) {
assert(node.getDirection().dir == VariableDirection::feeding);
assert(consumer.getDirection().dir == VariableDirection::consuming);
pvarPair.first =
boost::make_shared<DebugPrintAccessorDecorator<UserType>>(pvarPair.first, node.getQualifiedName());
pvarPair.second =
boost::make_shared<DebugPrintAccessorDecorator<UserType>>(pvarPair.second, consumer.getQualifiedName());
}
else {
pvarPair.first =
boost::make_shared<DebugPrintAccessorDecorator<UserType>>(pvarPair.first, node.getQualifiedName());
pvarPair.second =
boost::make_shared<DebugPrintAccessorDecorator<UserType>>(pvarPair.second, node.getQualifiedName());
}
}
// return the pair
return pvarPair;
}
/*********************************************************************************************************************/
void ChimeraTK::ConnectionMaker::makeConnectionForFeederWithoutImplementation(NetworkInformation& net) {
// we should be left with an application feeder node
if(net.feeder.getType() != NodeType::Application) {
throw ChimeraTK::logic_error("Unexpected node type!"); // LCOV_EXCL_LINE (assert-like)
}
if(net.consumers.size() == 1) {
debug(" Network of two nodes, connect directly");
const auto& consumer = net.consumers.front();
switch(consumer.getType()) {
case NodeType::Application:
debug(" Node type is Application");
callForType(*net.valueType, [&](auto t) {
using UserType = decltype(t);
auto impls = createApplicationVariable<UserType>(net.feeder, consumer);
net.feeder.setAppAccessorImplementation<UserType>(impls.first);
consumer.setAppAccessorImplementation<UserType>(impls.second);
});
break;
case NodeType::ControlSystem:
debug(" Node type is ControlSystem");
callForType(*net.valueType, [&](auto t) {
using UserType = decltype(t);
auto impl = getProcessVariable<UserType>(consumer);
net.feeder.setAppAccessorImplementation(impl);
});
break;
case NodeType::Device:
debug(" Node type is Device");
callForType(*net.valueType, [&](auto t) {
using UserType = decltype(t);
auto impl = createDeviceVariable<UserType>(consumer);
net.feeder.setAppAccessorImplementation(impl);
});
break;
case NodeType::TriggerReceiver:
debug(" Node type is TriggerReceiver");
// create a PV implementation to connect the Application with the TriggerFanOut.
{
boost::shared_ptr<TransferElement> consumingImpl;
callForType(*net.valueType, [&](auto t) {
using UserType = decltype(t);
auto impls = createApplicationVariable<UserType>(net.feeder, consumer);
net.feeder.setAppAccessorImplementation<UserType>(impls.first);
consumingImpl = impls.second;
});
// create the trigger fan out and store it in the map and the internalModuleList
auto triggerFanOut =
boost::make_shared<TriggerFanOut>(consumingImpl, *_app.getDeviceManager(consumer.getDeviceAlias()));
_app.internalModuleList.push_back(triggerFanOut);
net.triggerImpl[consumer.getDeviceAlias()] = triggerFanOut;
}
break;
case NodeType::Constant:
debug(" Node type is Constant");
net.feeder.setAppAccessorConstImplementation(net.feeder);
break;
default:
throw ChimeraTK::logic_error("Unexpected node type!");
}
}
else if(net.consumers.size() > 1) {
debug(" More than one consumer, using fan-out as feeder impl");
callForType(*net.valueType, [&](auto t) {
using UserType = decltype(t);
auto consumerImplementationPairs = setConsumerImplementations<UserType>(net);
// create FanOut and use it as the feeder implementation
auto fanOut = boost::make_shared<FeedingFanOut<UserType>>(net.feeder.getName(), net.unit, net.description,
net.valueLength, net.feeder.getDirection().withReturn, consumerImplementationPairs);
net.feeder.setAppAccessorImplementation<UserType>(fanOut);
});
}
else {
debug(" No consumer (presumably optimised out)");
net.feeder.setAppAccessorConstImplementation(VariableNetworkNode(net.valueType, true, net.valueLength));
}
}
/*********************************************************************************************************************/
void ConnectionMaker::makeConnectionForConstantFeeder(NetworkInformation& net) {
assert(net.feeder.getType() == NodeType::Constant);
for(const auto& consumer : net.consumers) {
AccessModeFlags flags{};
if(consumer.getMode() == UpdateMode::push) {
flags = {AccessMode::wait_for_new_data};
}
callForType(*net.valueType, [&](auto t) {
using UserType = decltype(t);
// each consumer gets its own implementation
if(consumer.getType() == NodeType::Application) {
consumer.setAppAccessorConstImplementation(net.feeder);
}
else if(consumer.getType() == NodeType::ControlSystem) {
throw ChimeraTK::logic_error("Using constants as feeders for control system variables is not supported!");
}
else if(consumer.getType() == NodeType::Device) {
// We register the required accessor as a recovery accessor. This is just a bare RegisterAccessor without
// any decorations directly from the backend.
auto deviceManager = _app.getDeviceManager(consumer.getDeviceAlias());
auto dev = deviceManager->getDevice().getBackend();
auto impl =
dev->getRegisterAccessor<UserType>(consumer.getRegisterName(), consumer.getNumberOfElements(), 0, {});
// Set the value
impl->accessChannel(0) =
std::vector<UserType>(consumer.getNumberOfElements(), net.feeder.getConstantValue<UserType>());
// The accessor implementation already has its data in the user buffer. We now just have to add a valid
// version number and have a recovery accessors (RecoveryHelper to be exact) which we can register at the
// DeviceModule. As this is a constant we don't need to change it later and don't have to store it somewhere
// else.
deviceManager->addRecoveryAccessor(
boost::make_shared<RecoveryHelper>(impl, VersionNumber(), deviceManager->writeOrder()));
}
else if(consumer.getType() == NodeType::TriggerReceiver) {
throw ChimeraTK::logic_error("Using constants as triggers is not supported!");
}
else {
throw ChimeraTK::logic_error("Unexpected node type!"); // LCOV_EXCL_LINE (assert-like)
}
});
}
}
/*********************************************************************************************************************/
void ConnectionMaker::optimiseUnmappedVariables(const std::set<std::string>& names) {
for(const auto& name : names) {
auto& network = _networks.at(name);
// if the control system is the feeder, change it into a constant
if(network.feeder.getType() == NodeType::ControlSystem) {
network.feeder = VariableNetworkNode(network.valueType, true, network.valueLength);
}
else {
// control system is a consumer: remove it from the list of consumers
network.consumers.remove_if([](auto& consumer) { return consumer.getType() == NodeType::ControlSystem; });
}
}
}