partial_sim.c 7.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/*
 * partial_sim.c
 *
 * Generate partials for testing scaling
 *
 * (c) 2006-2011 Thomas White <taw@physics.org>
 *
 * Part of CrystFEL - crystallography with a FEL
 *
 */


#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>

#include "utils.h"
#include "reflist-utils.h"
#include "symmetry.h"
#include "beam-parameters.h"
#include "detector.h"
#include "geometry.h"
#include "stream.h"


34
35
36
37
38
39
static void mess_up_cell(UnitCell *cell)
{
	double ax, ay, az;
	double bx, by, bz;
	double cx, cy, cz;

Thomas White's avatar
Thomas White committed
40
	/* Cell noise in percent */
Thomas White's avatar
Thomas White committed
41
	const double cnoise = 0.2;
Thomas White's avatar
Thomas White committed
42

Thomas White's avatar
Thomas White committed
43
44
	//STATUS("Real:\n");
	//cell_print(cell);
Thomas White's avatar
Thomas White committed
45

46
	cell_get_reciprocal(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz);
47
48
49
50
51
52
53
54
55
	ax = flat_noise(ax, cnoise*fabs(ax)/100.0);
	ay = flat_noise(ay, cnoise*fabs(ay)/100.0);
	az = flat_noise(az, cnoise*fabs(az)/100.0);
	bx = flat_noise(bx, cnoise*fabs(bx)/100.0);
	by = flat_noise(by, cnoise*fabs(by)/100.0);
	bz = flat_noise(bz, cnoise*fabs(bz)/100.0);
	cx = flat_noise(cx, cnoise*fabs(cx)/100.0);
	cy = flat_noise(cy, cnoise*fabs(cy)/100.0);
	cz = flat_noise(cz, cnoise*fabs(cz)/100.0);
56
	cell_set_reciprocal(cell, ax, ay, az, bx, by, bz, cx, cy, cz);
Thomas White's avatar
Thomas White committed
57

Thomas White's avatar
Thomas White committed
58
59
	//STATUS("Changed:\n");
	//cell_print(cell);
60
61
}

62

63
64
/* For each reflection in "partial", fill in what the intensity would be
 * according to "full" */
65
static void calculate_partials(RefList *partial, double osf,
Thomas White's avatar
Thomas White committed
66
                               RefList *full, const SymOpList *sym,
67
                               int random_intensities)
68
69
70
71
72
73
74
75
76
77
{
	Reflection *refl;
	RefListIterator *iter;

	for ( refl = first_refl(partial, &iter);
	      refl != NULL;
	      refl = next_refl(refl, iter) ) {

		signed int h, k, l;
		Reflection *rfull;
Thomas White's avatar
Thomas White committed
78
		double p, Ip, If;
79
80

		get_indices(refl, &h, &k, &l);
Thomas White's avatar
Thomas White committed
81
		get_asymm(sym, h, k, l, &h, &k, &l);
82
83
84
85
		p = get_partiality(refl);

		rfull = find_refl(full, h, k, l);
		if ( rfull == NULL ) {
86
87
88
89
90
91
92
93
94
			if ( random_intensities ) {
				rfull = add_refl(full, h, k, l);
				If = fabs(gaussian_noise(0.0, 1000.0));
				set_int(rfull, If);
				set_redundancy(rfull, 1);
			} else {
				set_redundancy(refl, 0);
				If = 0.0;
			}
95
96
		} else {
			If = get_intensity(rfull);
97
98
99
100
			if ( random_intensities ) {
				int red = get_redundancy(rfull);
				set_redundancy(rfull, red+1);
			}
101
		}
102
103

		Ip = osf * p * If;
104

105
		Ip = gaussian_noise(Ip, 100.0);
106

107
		set_int(refl, Ip);
108
		set_esd_intensity(refl, 100.0);
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
	}
}


static void show_help(const char *s)
{
	printf("Syntax: %s [options]\n\n", s);
	printf(
"Generate a stream containing partials from a reflection list.\n"
"\n"
" -h, --help              Display this help message.\n"
"\n"
"You need to provide the following basic options:\n"
" -i, --input=<file>      Read reflections from <file>.\n"
" -o, --output=<file>     Write partials in stream format to <file>.\n"
" -g. --geometry=<file>   Get detector geometry from file.\n"
" -b, --beam=<file>       Get beam parameters from file\n"
" -p, --pdb=<file>        PDB file from which to get the unit cell.\n"
"\n"
" -y, --symmetry=<sym>    Symmetry of the input reflection list.\n"
Thomas White's avatar
Thomas White committed
130
" -n <n>                  Simulate <n> patterns.  Default: 2.\n"
131
132
133
134
135
136
137
138
139
140
141
142
143
144
);
}


int main(int argc, char *argv[])
{
	int c;
	char *input_file = NULL;
	char *output_file = NULL;
	char *beamfile = NULL;
	char *geomfile = NULL;
	char *cellfile = NULL;
	struct detector *det = NULL;
	struct beam_params *beam = NULL;
145
	RefList *full = NULL;
Thomas White's avatar
Thomas White committed
146
147
	char *sym_str = NULL;
	SymOpList *sym;
148
149
150
151
	UnitCell *cell = NULL;
	struct quaternion orientation;
	struct image image;
	FILE *ofh;
152
153
	int n = 2;
	int i;
154
	int random_intensities = 0;
155
156
157
158
159
160
161
162
163
164
165
166
167
168

	/* Long options */
	const struct option longopts[] = {
		{"help",               0, NULL,               'h'},
		{"output",             1, NULL,               'o'},
		{"input",              1, NULL,               'i'},
		{"beam",               1, NULL,               'b'},
		{"pdb",                1, NULL,               'p'},
		{"geometry",           1, NULL,               'g'},
		{"symmetry",           1, NULL,               'y'},
		{0, 0, NULL, 0}
	};

	/* Short options */
169
	while ((c = getopt_long(argc, argv, "hi:o:b:p:g:y:n:",
Thomas White's avatar
Thomas White committed
170
171
	                        longopts, NULL)) != -1)
	{
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
		switch (c) {
		case 'h' :
			show_help(argv[0]);
			return 0;

		case 'o' :
			output_file = strdup(optarg);
			break;

		case 'i' :
			input_file = strdup(optarg);
			break;

		case 'b' :
			beamfile = strdup(optarg);
			break;

		case 'p' :
			cellfile = strdup(optarg);
			break;

		case 'g' :
			geomfile = strdup(optarg);
			break;

		case 'y' :
Thomas White's avatar
Thomas White committed
198
			sym_str = strdup(optarg);
199
200
			break;

201
202
203
204
		case 'n' :
			n = atoi(optarg);
			break;

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
		case 0 :
			break;

		default :
			return 1;
		}

	}

	/* Load beam */
	if ( beamfile == NULL ) {
		ERROR("You need to provide a beam parameters file.\n");
		return 1;
	}
	beam = get_beam_parameters(beamfile);
	if ( beam == NULL ) {
		ERROR("Failed to load beam parameters from '%s'\n", beamfile);
		return 1;
	}
	free(beamfile);

	/* Load cell */
	if ( cellfile == NULL ) {
		ERROR("You need to give a PDB file with the unit cell.\n");
		return 1;
	}
	cell = load_cell_from_pdb(cellfile);
	if ( cell == NULL ) {
		ERROR("Failed to get cell from '%s'\n", cellfile);
		return 1;
	}
	free(cellfile);

	/* Load geometry */
	if ( geomfile == NULL ) {
		ERROR("You need to give a geometry file.\n");
		return 1;
	}
	det = get_detector_geometry(geomfile);
244
	if ( det == NULL ) {
245
246
247
248
249
		ERROR("Failed to read geometry from '%s'\n", geomfile);
		return 1;
	}
	free(geomfile);

Thomas White's avatar
Thomas White committed
250
251
252
253
	if ( sym_str == NULL ) sym_str = strdup("1");
	sym = get_pointgroup(sym_str);
	free(sym_str);

254
	/* Load (full) reflections */
255
256
257
258
259
260
261
262
263
264
265
	if ( input_file != NULL ) {

		full = read_reflections(input_file);
		if ( full == NULL ) {
			ERROR("Failed to read reflections from '%s'\n",
			      input_file);
			return 1;
		}
		free(input_file);
		if ( check_list_symmetry(full, sym) ) {
			ERROR("The input reflection list does not appear to"
Thomas White's avatar
Thomas White committed
266
			      " have symmetry %s\n", symmetry_name(sym));
267
268
269
270
271
			return 1;
		}

	} else {
		random_intensities = 1;
272
273
	}

274
275
276
277
278
	if ( n < 1 ) {
		ERROR("Number of patterns must be at least 1.\n");
		return 1;
	}

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
	if ( output_file == NULL ) {
		ERROR("You must pgive a filename for the output.\n");
		return 1;
	}
	ofh = fopen(output_file, "w");
	if ( ofh == NULL ) {
		ERROR("Couldn't open output file '%s'\n", output_file);
		return 1;
	}
	free(output_file);
	write_stream_header(ofh, argc, argv);

	image.det = det;
	image.width = det->max_fs;
	image.height = det->max_ss;

	image.lambda = ph_en_to_lambda(eV_to_J(beam->photon_energy));
	image.div = beam->divergence;
	image.bw = beam->bandwidth;
Thomas White's avatar
Thomas White committed
298
	image.profile_radius = 0.003e9;
299
	image.i0_available = 0;
300
301
	image.filename = malloc(256);

302
303
304
305
	if ( random_intensities ) {
		full = reflist_new();
	}

306
307
	for ( i=0; i<n; i++ ) {

Thomas White's avatar
Thomas White committed
308
309
310
311
312
313
314
		double osf;

		if ( random() > RAND_MAX/2 ) {
			osf = 1.0;
		} else {
			osf = 2.0;
		}
Thomas White's avatar
Thomas White committed
315
		//STATUS("Image %i scale factor %f\n", i, osf);
Thomas White's avatar
Thomas White committed
316

317
318
319
320
		/* Set up a random orientation */
		orientation = random_quaternion();
		image.indexed_cell = cell_rotate(cell, orientation);

321
		snprintf(image.filename, 255, "dummy.h5");
322
		image.reflections = find_intersections(&image,
323
		                                       image.indexed_cell);
324
325
		calculate_partials(image.reflections, osf, full, sym,
		                   random_intensities);
326
327

		/* Give a slightly incorrect cell in the stream */
Thomas White's avatar
Thomas White committed
328
		mess_up_cell(image.indexed_cell);
329
330
331
332
333
334
335
336
337
		write_chunk(ofh, &image, STREAM_INTEGRATED);

		reflist_free(image.reflections);
		cell_free(image.indexed_cell);

		progress_bar(i+1, n, "Simulating");

	}

338
339
340
341
342
	if ( random_intensities ) {
		STATUS("Writing full intensities to partial_sim.hkl\n");
		write_reflist("partial_sim.hkl", full, cell);
	}

343
344
345
346
	fclose(ofh);
	cell_free(cell);
	free_detector_geometry(det);
	free(beam);
Thomas White's avatar
Thomas White committed
347
	free_symoplist(sym);
348
	reflist_free(full);
349
	free(image.filename);
350
351
352

	return 0;
}