pattern_sim.c 9.88 KB
Newer Older
1
2
3
/*
 * main.c
 *
Thomas White's avatar
Thomas White committed
4
 * (c) 2006-2010 Thomas White <taw@physics.org>
5
 *
Thomas White's avatar
Thomas White committed
6
 * Part of CrystFEL - crystallography with a FEL
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 */


#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
Thomas White's avatar
Thomas White committed
20
#include <getopt.h>
21

22
#include "image.h"
Thomas White's avatar
Thomas White committed
23
#include "diffraction.h"
24
#include "diffraction-gpu.h"
25
#include "cell.h"
26
27
#include "utils.h"
#include "hdf5-file.h"
Thomas White's avatar
Thomas White committed
28
#include "detector.h"
Thomas White's avatar
Thomas White committed
29
#include "intensities.h"
Thomas White's avatar
Thomas White committed
30
#include "sfac.h"
31
32


Thomas White's avatar
Thomas White committed
33
static void show_help(const char *s)
34
{
35
	printf("Syntax: %s [options]\n\n", s);
Thomas White's avatar
Thomas White committed
36
	printf(
Thomas White's avatar
Thomas White committed
37
"Simulate diffraction patterns from small crystals probed with femtosecond\n"
Thomas White's avatar
Thomas White committed
38
39
"pulses of X-rays from a free electron laser.\n"
"\n"
40
41
" -h, --help                Display this help message.\n"
"     --simulation-details  Show technical details of the simulation.\n"
42
"     --gpu                 Use the GPU to speed up the calculation.\n"
43
44
"\n"
"     --near-bragg          Output h,k,l,I near Bragg conditions.\n"
45
"     --powder              Output a powder pattern as results/powder.h5.\n"
46
47
" -n, --number=<N>          Generate N images.  Default 1.\n"
"     --no-images           Do not output any HDF5 files.\n"
Thomas White's avatar
Thomas White committed
48
" -r, --random-orientation  Use a randomly generated orientation\n"
49
"                            (a new orientation will be used for each image).\n"
Thomas White's avatar
Thomas White committed
50
51
52
53
54
"\n"
"By default, the simulation aims to be as accurate as possible.  For greater\n"
"speed, or for testing, you can choose to disable certain things using the\n"
"following options.\n"
"\n"
55
"     --no-water            Do not simulate water background.\n"
Thomas White's avatar
Thomas White committed
56
"     --no-noise            Do not calculate Poisson noise.\n"
Thomas White's avatar
Thomas White committed
57
58
59
"     --no-bloom            Do not calculate CCD bloom (intensities which are\n"
"                            above the recordable range will be clamped to\n"
"                            the maximum allowable value).\n"
60
);
Thomas White's avatar
Thomas White committed
61
62
63
}


64
static void show_details()
Thomas White's avatar
Thomas White committed
65
{
Thomas White's avatar
Thomas White committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
	printf(
"This program simulates diffraction patterns from small crystals illuminated\n"
"with femtosecond X-ray pulses from a free electron laser.\n"
"\n"
"The lattice transform from the specified number of unit cells is calculated\n"
"using the closed-form solution for a truncated lattice:\n"
"\n"
"F(q) =  sin(pi*na*q.a)/sin(pi*q.a)\n"
"      * sin(pi*nb*q.b)/sin(pi*q.b)\n"
"      * sin(pi*nc*q.c)/sin(pi*q.c)\n"
"\n"
"na = number of unit cells in 'a' direction (likewise nb, nc)\n"
" q = reciprocal vector (1/d convention, not 2pi/d)\n"
"\n"
"This value is multiplied by the complex structure factor at the nearest\n"
"Bragg position, i.e. the gradient of the shape transform across each\n"
"appearance of the shape transform is not included, for speed of calculation.\n"
"\n"
"Complex structure factors are calculated using a combination of the Henke\n"
"and Waasmeier-Kirfel scattering factors. The Henke factors are complex\n"
"and energy dependence, whereas the Waas-Kirf values are real-valued and\n"
"|q|-dependent.  The difference between the Waas-Kirf value at the\n"
"appropriate |q| and the same value at |q|=0 is subtracted from the Henke\n"
"value.  The Henke values are linearly interpolated from the provided tables\n"
"(note that the interpolation should really be exponential).\n"
"\n"
"The modulus of the structure factor is taken and squared.  Intensity from\n"
"water is then added according to the first term of equation 5 from\n"
Thomas White's avatar
Thomas White committed
94
"Phys Chem Chem Phys 2003 (5) 1981--1991.\n"
Thomas White's avatar
Thomas White committed
95
96
97
98
99
100
101
102
103
104
"\n"
"Expected intensities at the CCD are then calculated using:\n"
"\n"
"I(q) = I0 * r^2 * |F(q)|^2 * S\n"
"\n"
"I0 = number of photons per unit area in the incident beam\n"
" r = Thomson radius\n"
" S = solid angle of corresponding pixel\n"
"\n"
"Poisson counts are generated from the expected intensities using Knuth's\n"
Thomas White's avatar
Thomas White committed
105
106
107
"algorithm.  When the intensity is sufficiently high that Knuth's algorithm\n"
"would result in machine precision problems, a normal distribution with\n"
"standard deviation sqrt(I) is used instead.\n"
Thomas White's avatar
Thomas White committed
108
109
110
111
112
113
"\n"
"Bloom of the CCD is included.  Any excess intensity in a particular pixel\n"
"is divided between the neighbouring pixels.  Diagonal neighbours receive\n"
"half the contribution of adjacent pixels.  This process is repeated for\n"
"every pixel until all pixels are below the saturation value.  Note that this\n"
"process is slow for very saturated images.\n");
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
}


static struct quaternion read_quaternion()
{
	do {

		int r;
		float w, x, y, z;
		char line[1024];
		char *rval;

		printf("Please input quaternion: w x y z\n");
		rval = fgets(line, 1023, stdin);
		if ( rval == NULL ) return invalid_quaternion();
		chomp(line);

		r = sscanf(line, "%f %f %f %f", &w, &x, &y, &z);
		if ( r == 4 ) {

			struct quaternion quat;

			quat.w = w;
			quat.x = x;
			quat.y = y;
			quat.z = z;

			return quat;

		} else {
144
			ERROR("Invalid rotation '%s'\n", line);
145
146
147
		}

	} while ( 1 );
148
149
150
151
152
}


int main(int argc, char *argv[])
{
153
	int c;
154
	struct image image;
155
	struct gpu_context *gctx = NULL;
156
	long long int *powder;
Thomas White's avatar
Thomas White committed
157
	int config_simdetails = 0;
158
159
	int config_nearbragg = 0;
	int config_randomquat = 0;
160
	int config_noimages = 0;
161
	int config_nowater = 0;
Thomas White's avatar
Thomas White committed
162
	int config_nonoise = 0;
Thomas White's avatar
Thomas White committed
163
	int config_nobloom = 0;
164
	int config_nosfac = 0;
165
	int config_gpu = 0;
166
	int config_powder = 0;
Thomas White's avatar
Thomas White committed
167
168
169
	int ndone = 0;    /* Number of simulations done (images or not) */
	int number = 1;   /* Number used for filename of image */
	int n_images = 1; /* Generate one image by default */
170
	int done = 0;
Thomas White's avatar
Thomas White committed
171

172
	/* Long options */
Thomas White's avatar
Thomas White committed
173
	const struct option longopts[] = {
174
175
		{"help",               0, NULL,               'h'},
		{"simulation-details", 0, &config_simdetails,  1},
176
		{"gpu",                0, &config_gpu,         1},
177
178
179
		{"near-bragg",         0, &config_nearbragg,   1},
		{"random-orientation", 0, NULL,               'r'},
		{"number",             1, NULL,               'n'},
Thomas White's avatar
Thomas White committed
180
		{"no-images",          0, &config_noimages,    1},
181
		{"no-water",           0, &config_nowater,     1},
Thomas White's avatar
Thomas White committed
182
		{"no-noise",           0, &config_nonoise,     1},
Thomas White's avatar
Thomas White committed
183
		{"no-bloom",           0, &config_nobloom,     1},
184
185
		{"no-sfac",            0, &config_nosfac,      1},
		{"powder",             0, &config_powder,      1},
186
		{0, 0, NULL, 0}
Thomas White's avatar
Thomas White committed
187
	};
188

189
190
	/* Short options */
	while ((c = getopt_long(argc, argv, "hrn:", longopts, NULL)) != -1) {
191

Thomas White's avatar
Thomas White committed
192
193
194
195
196
		switch (c) {
		case 'h' : {
			show_help(argv[0]);
			return 0;
		}
197

198
199
200
201
202
203
204
205
206
207
		case 'r' : {
			config_randomquat = 1;
			break;
		}

		case 'n' : {
			n_images = atoi(optarg);
			break;
		}

Thomas White's avatar
Thomas White committed
208
209
210
		case 0 : {
			break;
		}
211

Thomas White's avatar
Thomas White committed
212
213
214
		default : {
			return 1;
		}
215
216
217
218
		}

	}

Thomas White's avatar
Thomas White committed
219
	if ( config_simdetails ) {
220
		show_details();
Thomas White's avatar
Thomas White committed
221
222
223
		return 0;
	}

Thomas White's avatar
Thomas White committed
224
	/* Define image parameters */
Thomas White's avatar
Thomas White committed
225
226
	image.width = 1024;
	image.height = 1024;
227
	image.lambda = ph_en_to_lambda(eV_to_J(2.0e3));  /* Wavelength */
228
	image.molecule = load_molecule();
Thomas White's avatar
Thomas White committed
229

230
231
232
233
234
235
236
237
238
239
	/* Set up detector configuration */
	image.det.n_panels = 2;
	image.det.panels = malloc(2*sizeof(struct panel));
	/* Upper panel */
	image.det.panels[0].min_x = 0;
	image.det.panels[0].max_x = 1023;
	image.det.panels[0].min_y = 512;
	image.det.panels[0].max_y = 1023;
	image.det.panels[0].cx = 491.9;
	image.det.panels[0].cy = 440.7;
Thomas White's avatar
Thomas White committed
240
241
	image.det.panels[0].clen = 67.0e-3;
	image.det.panels[0].res = 13333.3;  /* 75 micron pixel size */
242
243
244
245
246
247
248
	/* Lower panel */
	image.det.panels[1].min_x = 0;
	image.det.panels[1].max_x = 1023;
	image.det.panels[1].min_y = 0;
	image.det.panels[1].max_y = 511;
	image.det.panels[1].cx = 492.0;
	image.det.panels[1].cy = 779.7;
Thomas White's avatar
Thomas White committed
249
250
	image.det.panels[1].clen = 75.0e-3;
	image.det.panels[1].res = 13333.3;  /* 75 micron pixel size */
251

252
253
	powder = calloc(image.width*image.height, sizeof(*powder));

Thomas White's avatar
Thomas White committed
254
	/* Splurge a few useful numbers */
255
	STATUS("Wavelength is %f nm\n", image.lambda/1.0e-9);
Thomas White's avatar
Thomas White committed
256

257
258
	do {

Thomas White's avatar
Thomas White committed
259
		int na, nb, nc;
260
		double a, b, c, d;
Thomas White's avatar
Thomas White committed
261

262
263
264
		na = 8*random()/RAND_MAX + 4;
		nb = 8*random()/RAND_MAX + 4;
		nc = 16*random()/RAND_MAX + 30;
Thomas White's avatar
Thomas White committed
265

266
267
268
		/* Read quaternion from stdin */
		if ( config_randomquat ) {
			image.orientation = random_quaternion();
269
		} else {
270
			image.orientation = read_quaternion();
271
272
		}

Thomas White's avatar
Thomas White committed
273
274
275
276
		STATUS("Orientation is %5.3f %5.3f %5.3f %5.3f\n",
		       image.orientation.w, image.orientation.x,
		       image.orientation.y, image.orientation.z);

Thomas White's avatar
D'oh    
Thomas White committed
277
		if ( !quaternion_valid(image.orientation) ) {
278
			ERROR("Orientation modulus is not zero!\n");
279
280
281
282
283
284
285
286
			return 1;
		}

		/* Ensure no residual information */
		image.sfacs = NULL;
		image.data = NULL;
		image.twotheta = NULL;
		image.hdr = NULL;
287

288
289
290
291
		cell_get_parameters(image.molecule->cell, &a, &b, &c, &d, &d, &d);
		STATUS("Particle size = %i x %i x %i (=%5.2f x %5.2f x %5.2f nm)\n",
	               na, nb, nc, na*a/1.0e-9, nb*b/1.0e-9, nc*c/1.0e-9);

292
		if ( config_gpu ) {
293
294
295
296
297
			if ( gctx == NULL ) {
				gctx = setup_gpu(config_nosfac, &image,
				                 image.molecule);
			}
			get_diffraction_gpu(gctx, &image, na, nb, nc);
298
299
300
		} else {
			get_diffraction(&image, na, nb, nc, config_nosfac);
		}
Thomas White's avatar
Thomas White committed
301
302
303
304
		if ( image.molecule == NULL ) {
			ERROR("Couldn't open molecule.pdb\n");
			return 1;
		}
305
306
307
308
309
		if ( image.sfacs == NULL ) {
			ERROR("Diffraction calculation failed.\n");
			goto skip;
		}

Thomas White's avatar
Thomas White committed
310
311
		record_image(&image, !config_nowater, !config_nonoise,
		             !config_nobloom);
Thomas White's avatar
Thomas White committed
312

Thomas White's avatar
Thomas White committed
313
		if ( config_nearbragg ) {
314
			output_intensities(&image, image.molecule->cell);
Thomas White's avatar
Thomas White committed
315
316
		}

317
318
319
320
321
322
323
324
325
326
327
328
329
		if ( config_powder ) {

			int x, y, w;

			w = image.width;

			for ( x=0; x<image.width; x++ ) {
			for ( y=0; y<image.height; y++ ) {
				powder[x+w*y] += image.data[x+w*y];
			}
			}

			if ( !(ndone % 10) ) {
330
				hdf5_write("results/integr.h5", powder,
331
332
333
334
335
				           image.width, image.height,
				           H5T_NATIVE_LLONG);
			}
		}

336
337
338
339
340
341
		if ( !config_noimages ) {

			char filename[1024];

			snprintf(filename, 1023, "results/sim-%i.h5", number);
			number++;
Thomas White's avatar
Thomas White committed
342

343
344
			/* Write the output file */
			hdf5_write(filename, image.data,
345
			           image.width, image.height, H5T_NATIVE_INT16);
346
347

		}
348

349
350
351
352
353
		/* Clean up */
		free(image.data);
		free(image.hdr);
		free(image.sfacs);
		free(image.twotheta);
Thomas White's avatar
Thomas White committed
354

355
skip:
Thomas White's avatar
Thomas White committed
356
		ndone++;
357

358
		if ( n_images && (ndone >= n_images) ) done = 1;
Thomas White's avatar
Thomas White committed
359

360
	} while ( !done );
361

362
363
364
365
	if ( gctx != NULL ) {
		cleanup_gpu(gctx);
	}

366
367
368
369
370
	free(image.det.panels);
	free(powder);
	free(image.molecule->reflections);
	free(image.molecule);

371
	return 0;
372
}