partial_sim.c 7.41 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/*
 * partial_sim.c
 *
 * Generate partials for testing scaling
 *
 * (c) 2006-2011 Thomas White <taw@physics.org>
 *
 * Part of CrystFEL - crystallography with a FEL
 *
 */


#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>

#include "utils.h"
#include "reflist-utils.h"
#include "symmetry.h"
#include "beam-parameters.h"
#include "detector.h"
#include "geometry.h"
#include "stream.h"


34
35
36
37
38
39
static void mess_up_cell(UnitCell *cell)
{
	double ax, ay, az;
	double bx, by, bz;
	double cx, cy, cz;

Thomas White's avatar
Thomas White committed
40
	/* Cell noise in percent */
Thomas White's avatar
Thomas White committed
41
	const double cnoise = 0.2;
Thomas White's avatar
Thomas White committed
42

Thomas White's avatar
Thomas White committed
43
44
	//STATUS("Real:\n");
	//cell_print(cell);
Thomas White's avatar
Thomas White committed
45

46
	cell_get_reciprocal(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz);
Thomas White's avatar
Thomas White committed
47
48
49
50
51
52
53
54
55
	ax = gaussian_noise(ax, cnoise*fabs(ax)/100.0);
	ay = gaussian_noise(ay, cnoise*fabs(ay)/100.0);
	az = gaussian_noise(az, cnoise*fabs(az)/100.0);
	bx = gaussian_noise(bx, cnoise*fabs(bx)/100.0);
	by = gaussian_noise(by, cnoise*fabs(by)/100.0);
	bz = gaussian_noise(bz, cnoise*fabs(bz)/100.0);
	cx = gaussian_noise(cx, cnoise*fabs(cx)/100.0);
	cy = gaussian_noise(cy, cnoise*fabs(cy)/100.0);
	cz = gaussian_noise(cz, cnoise*fabs(cz)/100.0);
56
	cell_set_reciprocal(cell, ax, ay, az, bx, by, bz, cx, cy, cz);
Thomas White's avatar
Thomas White committed
57

Thomas White's avatar
Thomas White committed
58
59
	//STATUS("Changed:\n");
	//cell_print(cell);
60
61
}

62

63
64
/* For each reflection in "partial", fill in what the intensity would be
 * according to "full" */
65
static void calculate_partials(RefList *partial, double osf,
66
67
                               RefList *full, const char *sym,
                               int random_intensities)
68
69
70
71
72
73
74
75
76
77
78
79
{
	Reflection *refl;
	RefListIterator *iter;

	for ( refl = first_refl(partial, &iter);
	      refl != NULL;
	      refl = next_refl(refl, iter) ) {

		signed int h, k, l;
		Reflection *rfull;
		double p;
		double Ip;
80
		double If;
81
82
83
84
85
86
87

		get_indices(refl, &h, &k, &l);
		get_asymm(h, k, l, &h, &k, &l, sym);
		p = get_partiality(refl);

		rfull = find_refl(full, h, k, l);
		if ( rfull == NULL ) {
88
89
90
91
92
93
94
95
96
			if ( random_intensities ) {
				rfull = add_refl(full, h, k, l);
				If = fabs(gaussian_noise(0.0, 1000.0));
				set_int(rfull, If);
				set_redundancy(rfull, 1);
			} else {
				set_redundancy(refl, 0);
				If = 0.0;
			}
97
		}
98
99
100
101

		Ip = osf * p * If;
		set_int(refl, Ip);

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
	}
}


static void show_help(const char *s)
{
	printf("Syntax: %s [options]\n\n", s);
	printf(
"Generate a stream containing partials from a reflection list.\n"
"\n"
" -h, --help              Display this help message.\n"
"\n"
"You need to provide the following basic options:\n"
" -i, --input=<file>      Read reflections from <file>.\n"
" -o, --output=<file>     Write partials in stream format to <file>.\n"
" -g. --geometry=<file>   Get detector geometry from file.\n"
" -b, --beam=<file>       Get beam parameters from file\n"
" -p, --pdb=<file>        PDB file from which to get the unit cell.\n"
"\n"
" -y, --symmetry=<sym>    Symmetry of the input reflection list.\n"
Thomas White's avatar
Thomas White committed
122
" -n <n>                  Simulate <n> patterns.  Default: 2.\n"
123
124
125
126
127
128
129
130
131
132
133
134
135
136
);
}


int main(int argc, char *argv[])
{
	int c;
	char *input_file = NULL;
	char *output_file = NULL;
	char *beamfile = NULL;
	char *geomfile = NULL;
	char *cellfile = NULL;
	struct detector *det = NULL;
	struct beam_params *beam = NULL;
137
	RefList *full = NULL;
138
139
140
141
142
	char *sym = NULL;
	UnitCell *cell = NULL;
	struct quaternion orientation;
	struct image image;
	FILE *ofh;
143
144
	int n = 2;
	int i;
145
	int random_intensities = 0;
146
147
148
149
150
151
152
153
154
155
156
157
158
159

	/* Long options */
	const struct option longopts[] = {
		{"help",               0, NULL,               'h'},
		{"output",             1, NULL,               'o'},
		{"input",              1, NULL,               'i'},
		{"beam",               1, NULL,               'b'},
		{"pdb",                1, NULL,               'p'},
		{"geometry",           1, NULL,               'g'},
		{"symmetry",           1, NULL,               'y'},
		{0, 0, NULL, 0}
	};

	/* Short options */
160
	while ((c = getopt_long(argc, argv, "hi:o:b:p:g:y:n:",
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
	                        longopts, NULL)) != -1) {

		switch (c) {
		case 'h' :
			show_help(argv[0]);
			return 0;

		case 'o' :
			output_file = strdup(optarg);
			break;

		case 'i' :
			input_file = strdup(optarg);
			break;

		case 'b' :
			beamfile = strdup(optarg);
			break;

		case 'p' :
			cellfile = strdup(optarg);
			break;

		case 'g' :
			geomfile = strdup(optarg);
			break;

		case 'y' :
			sym = strdup(optarg);
			break;

192
193
194
195
		case 'n' :
			n = atoi(optarg);
			break;

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
		case 0 :
			break;

		default :
			return 1;
		}

	}

	/* Load beam */
	if ( beamfile == NULL ) {
		ERROR("You need to provide a beam parameters file.\n");
		return 1;
	}
	beam = get_beam_parameters(beamfile);
	if ( beam == NULL ) {
		ERROR("Failed to load beam parameters from '%s'\n", beamfile);
		return 1;
	}
	free(beamfile);

	/* Load cell */
	if ( cellfile == NULL ) {
		ERROR("You need to give a PDB file with the unit cell.\n");
		return 1;
	}
	cell = load_cell_from_pdb(cellfile);
	if ( cell == NULL ) {
		ERROR("Failed to get cell from '%s'\n", cellfile);
		return 1;
	}
	free(cellfile);

	/* Load geometry */
	if ( geomfile == NULL ) {
		ERROR("You need to give a geometry file.\n");
		return 1;
	}
	det = get_detector_geometry(geomfile);
235
	if ( det == NULL ) {
236
237
238
239
240
241
		ERROR("Failed to read geometry from '%s'\n", geomfile);
		return 1;
	}
	free(geomfile);

	/* Load (full) reflections */
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
	if ( input_file != NULL ) {

		full = read_reflections(input_file);
		if ( full == NULL ) {
			ERROR("Failed to read reflections from '%s'\n",
			      input_file);
			return 1;
		}
		free(input_file);
		if ( check_list_symmetry(full, sym) ) {
			ERROR("The input reflection list does not appear to"
			      " have symmetry %s\n", sym);
			return 1;
		}

	} else {
		random_intensities = 1;
259
260
	}

261
262
263
264
265
	if ( n < 1 ) {
		ERROR("Number of patterns must be at least 1.\n");
		return 1;
	}

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
	if ( output_file == NULL ) {
		ERROR("You must pgive a filename for the output.\n");
		return 1;
	}
	ofh = fopen(output_file, "w");
	if ( ofh == NULL ) {
		ERROR("Couldn't open output file '%s'\n", output_file);
		return 1;
	}
	free(output_file);
	write_stream_header(ofh, argc, argv);

	image.det = det;
	image.width = det->max_fs;
	image.height = det->max_ss;

	image.lambda = ph_en_to_lambda(eV_to_J(beam->photon_energy));
	image.div = beam->divergence;
	image.bw = beam->bandwidth;
Thomas White's avatar
Thomas White committed
285
	image.profile_radius = 0.003e9;
286
	image.i0_available = 0;
287
288
	image.filename = malloc(256);

289
290
291
292
	if ( random_intensities ) {
		full = reflist_new();
	}

293
294
	for ( i=0; i<n; i++ ) {

Thomas White's avatar
Thomas White committed
295
296
297
298
299
300
301
		double osf;

		if ( random() > RAND_MAX/2 ) {
			osf = 1.0;
		} else {
			osf = 2.0;
		}
Thomas White's avatar
Thomas White committed
302
		//STATUS("Image %i scale factor %f\n", i, osf);
Thomas White's avatar
Thomas White committed
303

304
305
306
307
		/* Set up a random orientation */
		orientation = random_quaternion();
		image.indexed_cell = cell_rotate(cell, orientation);

308
		snprintf(image.filename, 255, "dummy.h5");
309
		image.reflections = find_intersections(&image,
310
		                                       image.indexed_cell);
311
312
		calculate_partials(image.reflections, osf, full, sym,
		                   random_intensities);
313
314

		/* Give a slightly incorrect cell in the stream */
Thomas White's avatar
Thomas White committed
315
		mess_up_cell(image.indexed_cell);
316
317
318
319
320
321
322
323
324
		write_chunk(ofh, &image, STREAM_INTEGRATED);

		reflist_free(image.reflections);
		cell_free(image.indexed_cell);

		progress_bar(i+1, n, "Simulating");

	}

325
326
327
328
329
	if ( random_intensities ) {
		STATUS("Writing full intensities to partial_sim.hkl\n");
		write_reflist("partial_sim.hkl", full, cell);
	}

330
331
332
333
334
335
	fclose(ofh);
	cell_free(cell);
	free_detector_geometry(det);
	free(beam);
	free(sym);
	reflist_free(full);
336
	free(image.filename);
337
338
339

	return 0;
}