Commit fcd7d1ec by Gernot Maier

 %% Cell type:markdown id:72a0298f-11fd-41cd-9858-525a442f5e67 tags: # Shock powered transients - [Fang, K. et al (2021)](https://arxiv.org/abs/2007.15742) Step throught this paper to capture the relevant points. %% Cell type:code id:a6513a2f-9f82-4b77-827f-53562ce2e8ab tags:  python import astropy.units as u import astropy.constants as const import math import matplotlib.pyplot as plt import numpy as np  %% Cell type:markdown id:cf2f37ef-18ab-4277-bca3-ab9962d49387 tags: #### Fang et al (2021) - Figure 1 %% Cell type:markdown id:ec76c7bb-9616-46c9-9409-27841def1373 tags: ## Section 2.1: Shock Dynamics and Thermal Expansion - spherical expanding homologoues ejecta of average velicity $\bar v_{ej}$ - inner layers slower than other layers: $v_{ej}\propto r$ (homologoues velocity profile) ### External medium Density of external medium $n \equiv \rho / m_p$ ($\rho$ = mass densitiy) with a radial profile of $n \propto r^{-k}$ with $k\geq 2$ The external medium is concentrated in a fractional solid angle $f_{\Omega}\leq 1$. For a thin equatorial disk, $f_{\Omega} \sim h/r$. %% Cell type:code id:d2ad8e34-3dfe-465b-8478-b1f0d0ace7ee tags:  python # assumed f_omega in the following f_omega = 1.  %% Cell type:markdown id:80cb7f5e-cd0a-4a9c-ab44-a086d60c5167 tags: ### Steady wind approximation Assume a steady wind with - mass-loss rate $\dot M$ - wind velocity $v_w$ the density becomes $n \simeq \dot M/(4\pi f_{\Omega}r^2 v_w m_p) = A / (m_p r^2)$ with $A \equiv \dot M/(4\pi f_{\Omega} v_w)$ Assume here $k=2$, otherwise A(r) is a function of radius. %% Cell type:markdown id:07d923a2-dc40-4312-840a-1e519521c55a tags: #### Typical values From modeling interacting supernovae Smith (2014): - $\dot M \sim 10^{-4} - 1$ M$_{\odot}$ yr$^{-1}$ - $v_w \sim 100 - 1000$ km s$^{-1}$ (note the typo units in the Fang et al paper: A$_*$ should be in g/cm and not g/cm$^2$) %% Cell type:code id:7f62e216-cd5d-49f5-b270-f23a50dd4ff7 tags:  python # canonical value A_star = 5.e11 *u.g/u.cm**2 def steady_wind_A(mdot, vw, fomega=1): "mass loss A" return mdot/(4.*math.pi*fomega*vw) v_w = (np.linspace( 100, 1000, 5))*u.km/u.s M_dot = np.logspace( -5., 0., 100)*u.M_sun/u.year plt.gcf().clear() plt.figure(figsize=(6,6)) for z in v_w: A = steady_wind_A(M_dot, z, f_omega) label_vw = ("v$_w=$%.0f km s$^{-1}$" % z.value) plt.plot( M_dot, A.to(u.g/u.cm), label=label_vw) plt.xlabel("mass loss rate $\dot M$ (M$_{\odot}$/yr)",fontsize=14) plt.ylabel("A (g/cm)",fontsize=14) plt.yscale('log') plt.xscale('log') plt.legend() plt.title("steady wind loss parameter A ($f_{\Omega}=%.2f$)" % f_omega) plt.show()  %%%% Output: display_data %%%% Output: display_data ![]() %% Cell type:markdown id:d0515d5b-23be-49b1-8c0e-2b4c488035d2 tags: ## Shocks Collision drives two shocks - forward shock into external medium - reverse shock into ejecta Shocks are radiative with rapid cooling of the gas behind both shocks --> gas accumulate in a thin shell which propagates outwards into the external medium. %% Cell type:markdown id:7cb403f5-0ee5-44a8-b5b7-012f5276a297 tags: Shocks reach radius $R_{sh}\approx v_{sh}t$ by the time $t$ after the explosion. Shock speed $v_{sh}$ will reach ejecta speed $v_{ej}$ ([Metzer & Pejach (2017)](https://ui.adsabs.harvard.edu/abs/2017MNRAS.471.3200M/abstract) **READ**), which reduces the power of the reverse shock with relation to the forward shock (**???**) $\rightarrow$ emission dominated by forward shock %% Cell type:markdown id:8f2425bf-f1fa-41cc-9c28-7338393c2473 tags: **Kinetic power of the forward shock**: $L_{sh} = \frac{9\pi}{8} f_{\Omega} m_p n_{sh} v_{sh}^3 R_{sh}^2 = \frac{9}{32} \dot M \frac{v_{sh}^3}{v_w} = \frac{9\pi}{8} A f_{\Omega} v_{sh}^3 \ \ (1)$ with $n_{sh}(R_{sh})$: upstream density ahead of shock %% Cell type:code id:efb1b6df-322e-4318-9d4e-9bf2abd3f4c2 tags:  python def kinetic_power(A, v_sh, fomega=1): "kinetic power of forward shock" return 9.*math.pi/8*A*fomega*v_sh**3 v_sh = (np.logspace( 3, 5, 3))*u.km/u.s A = np.logspace( 11., 18., 100)*u.g/u.cm plt.gcf().clear() plt.figure(figsize=(8,8)) for z in v_sh: l_kin = kinetic_power(A, z, f_omega) label_vw = ("v$_{sh}=$%.0f km s$^{-1}$" % z.value) plt.plot( A, l_kin.to(u.erg/u.s), label=label_vw) plt.xlabel("steady wind loss parameter A ($g/cm$)",fontsize=14) plt.ylabel("$L_{sh} (erg/s)$",fontsize=14) plt.yscale('log') plt.xscale('log') plt.legend() plt.title("Kinetic power of forward shock ($f_{\Omega}=%.2f$)" % f_omega) plt.show()  %%%% Output: display_data %%%% Output: display_data ![]() %% Cell type:markdown id:cc8be452-fc11-4d1c-b7e9-96a757a148d7 tags: **Shock heating:** Gas immediatly behind the shock is heated to: $kT \simeq \frac{3}{16} \mu m_p v_{sh}^2 \approx 11 v_{8.5}^2$ keV. with $v_{sh}=v_{sh}/(3000 km s^{-1}$. %% Cell type:markdown id:4dee965b-6662-455f-9d45-a1a4c995e49e tags: Mean molecular weight of the fully ionized gas (solar composition): $\mu=0.62$ (would be $\mu=2$ if it would be hydrogen-poor gas) %% Cell type:code id:2d9f096c-8a77-47a1-bacb-be7611c663c8 tags:  python mu=0.62  %% Cell type:code id:b5b45a48-2f41-4283-ba70-6d4e7a98d055 tags:  python def shock_temperature(v_sh,mu): "gas temperature behind the shock" return 3./16.*mu*const.m_p*v_sh**2 v_sh = (np.logspace( 3, 5, 100))*u.km/u.s T_sh = shock_temperature(v_sh, mu) plt.gcf().clear() plt.figure(figsize=(6,6)) plt.plot( v_sh, T_sh.to(u.keV)) plt.xlabel("shock speed ($km/s$)",fontsize=14) plt.xlabel("shock velocity ($km/s$)",fontsize=14) plt.ylabel("shock temperature ($keV$)",fontsize=14) plt.yscale('log') plt.xscale('log') plt.title("Temperature of gas behind shock ($\mu=%.2f$)" % mu) plt.show()  %%%% Output: display_data %%%% Output: display_data ![]() %% Cell type:markdown id:a8217979-9529-4c67-9524-8d39456b540f tags: Large photoelectric opacity of the external medium: most of $L_{sh}$ is absorped and reprocessed via continuum and line emission into the optical wavelengths. Time delay of optical emission, as reprocessed emission from nearby the shock must propagate through the column of external medium: $\Sigma = \int_{R_sh}^{\infty} ndr \sim n_{sh} R_{sh}$. Optical diffussion time scale: $t_{diff} \approx \tau_{opt} \cdot (R_{sh}/c)$ with the optical depth $\tau_{opt} \equiv \sum \sigma_{opt}$ ($\sigma_{opt}$ is the effective cross section at visual wavelengths). Adiabatic losses can be neglected as long as $t_{diff} \leq t_{dyn}$ with the expansion time scale of the shocked gas $t_{dyn} = R_{sh}/v_{sh}$: $\tau_{opt} \lesssim c/v_{sh} \ \ \ (3)$ %% Cell type:markdown id:d0b6eb97-21f5-40df-95f2-e221fd2d34c1 tags: This condition is satisfied at the critical time This condition is satisfied at times later than $t$: $t \gtrsim t_{pk} \approx \frac{c}{v_{sh}^2 n_{sh}} \sigma_{opt} = \frac{\dot M \kappa_{opt}}{4\pi f_{\Omega}c v_w} = \frac{A \kappa_{opt}}{c} \ \ (4)$ with the optical opacity $\kappa_{opt}\equiv \sigma_{opt}/m_p$ (opacity: cross section for absorbing photons per units mass material; units [m$^2$/kg]). Label $t_{pk}$ is introduced here, as the critical time often corresponds to the peak of the light curve. Any diffusion through the eject is ignored in this step. Any diffusion through the ejecta and corrections to $t_{diff}$ due its non-spherical geometry are ignored in this step. %% Cell type:code id:2d131588-2352-426c-b8a6-cba2aeead980 tags:  python def peak_time(a,kappa): "peak time" return a*kappa/const.c kappa_es = 0.38 *u.cm**2/u.g t_pk = peak_time(A, kappa_es) plt.gcf().clear() plt.figure(figsize=(6,6)) plt.plot( A, t_pk.to(u.s)) plt.xlabel("steady wind loss parameter A ($g/cm$)",fontsize=14) plt.ylabel("peak time $t_{pk}$ ($s$)",fontsize=14) plt.yscale('log') plt.xscale('log') plt.title("Peak time ($\kappa=%.2f$ cm$^2$/g )" % kappa_es.value) plt.show()  %%%% Output: display_data %%%% Output: display_data ![]() %% Cell type:markdown id:f1ef373f-bf29-4aa1-8920-b064924d13ca tags: **Shock velocity is function of peak luminosity and peak time**: $v_{sh} = \left( \frac{8}{9\pi} \frac{L_{pk} \kappa_{opt}}{ct_{pk}f_{\Omega}} \right)^{1/3}$ (derived from combining (1) and (4)) Assume here that $L_{pk} \approx L_{sh}$ (all optical emission is shock powered, without any contribution from e.g. radiactive decay). %% Cell type:markdown id:a7d2c5e2-7398-4254-a28d-b14bf19efa1b tags: ## Calorimetric Technique Conditions on the optical depth are very similar to the required conditions for particle acceleration and that the shock discontinuity is mediated by collisionless plasma. At times earlier than $t_{pk}$, the trapped radiations thickens the shock transition to macroscopic scale and does not allow any particle injection. 1. no efficient particle acceleration before $t_{pk}$ 2. fixed fraction $\epsilon_{rel}$ of the shock power $L_{sh}$ is placed into relatistic particles Total energy of relativistic particles $E_{rel}$ is proportional to the fraction of radiated optical fluence $f_{sh}$: $E_{rel} \approx f_{sh} \epsilon_{rel} E_{opt}$ $\epsilon_{rel} E_{opt}$ is an upper limit to the energy of accelerated particles, as $f_{sh}<1$. The total optical energy of shock-powered transients places an upper bound on the total gamma-ray and neutrino emission, as the relativistic particles cool quickly (**calorimetric method**). %% Cell type:markdown id:1244bc13-2c94-4ece-a430-a2af2b5f6de0 tags: ## Coooling time scales (skip discussions on cooling time scales, **revisit later**) Shocks are generally radiative ($t_{cool} \ll t_{dyn}$) for $v_{sh} \lesssim 10,000-30,000$ km s$^{-1}$. %% Cell type:markdown id:39e2b1d9-50e3-476a-89d6-6e26dec8b21a tags: For Novae: $\epsilon_{rel} \sim 0.003 - 0.01$ %% Cell type:markdown id:0b6c4b04-bc1e-440a-bf55-855aad526789 tags: **Dynamical tooling time scale:** $t_{dyn} \sim R_{sh} / v_{sh}$ %% Cell type:markdown id:c5d4d50b-450c-4b4b-abeb-5b4e7e2e1b4c tags: **Cooling times scale for radiatively cooled thermal gas**: $t_{cool} = \frac{9}{128} \frac{m_p v_{sh}^2}{\Lambda n_{sh}}$ at $T = T_{sh}$ and with cooling function $\Lambda$. At high temperatures $T \gtrsim 10^{7.3}$ K with dominating free-free cooling: $\Lambda \approx \Lambda_{ff} \approx 2.3 \times 10^{-27} (T_{sh}/$K$)^{1/2}$ erg cm$^3$ s$^{-1}$ Line emission cooling contributing at $10^5 < T < 10^{7.3}$: $\Lambda_{line} \approx 1.1 \times 10^{-22} (T_{sh}/$K$)^{-0.7}$ erg cm$^3$ s$^{-1}$ (see discussion in Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium (Princeton University Press, 2011) %% Cell type:code id:a3aaa2aa-1a46-44bf-a320-27917e0500f4 tags:  python def t_cool(n, v_sh, T_sh): "thermal cooling time scale" lambda_ff=2.3e-27*math.sqrt(T_sh.to(u.k)) return 9.128*const.m_p*v_sh**2/lambda_ff/n_sh  %% Cell type:markdown id:a7220e62-9fbf-4845-873d-a973a99b8994 tags: **Cooling time scale PP interactions**: $t_{pp} \approx \left( n \sigma_{pp} c \right)^{-1}$ ($\sigma_{pp} = 5 \times 10^{-26}$ cm$^2$ at 1 PeV) %% Cell type:code id:90740c71-67bf-466e-bfdc-cd417f25bc01 tags:  python def t_pp(n, sigma_pp=5.e-25*u.cm**2): "cooling time scale pp interactions" return 1./n/sigma_pp/const.c  %% Cell type:code id:4ab678c7-fb7f-4b45-a640-e58f83f9922d tags:  python  ... ...
 ... ... @@ -198,7 +198,7 @@ plt.plot( v_sh, T_sh.to(u.keV)) plt.xlabel("shock speed ($km/s$)",fontsize=14) plt.xlabel("shock velocity ($km/s$)",fontsize=14) plt.ylabel("shock temperature ($keV$)",fontsize=14) plt.yscale('log') plt.xscale('log') ... ... @@ -224,7 +224,7 @@ plt.show() # \tau_{opt} \lesssim c/v_{sh} \ \ \ (3) # $# This condition is satisfied at the critical time # This condition is satisfied at times later than$t$: # #$ # t \gtrsim t_{pk} \approx \frac{c}{v_{sh}^2 n_{sh}} \sigma_{opt} = \frac{\dot M \kappa_{opt}}{4\pi f_{\Omega}c v_w} = \frac{A \kappa_{opt}}{c} \ \ (4) ... ... @@ -234,7 +234,7 @@ plt.show() # # Label $t_{pk}$ is introduced here, as the critical time often corresponds to the peak of the light curve. # # Any diffusion through the eject is ignored in this step. # Any diffusion through the ejecta and corrections to $t_{diff}$ due its non-spherical geometry are ignored in this step. # + def peak_time(a,kappa): ... ... @@ -258,6 +258,8 @@ plt.xscale('log') plt.title("Peak time ($\kappa=%.2f$ cm$^2$/g )" % kappa_es.value) plt.show() # - # **Shock velocity is function of peak luminosity and peak time**: ... ... @@ -271,5 +273,72 @@ plt.show() # ## Calorimetric Technique # # Conditions on the optical depth are very similar to the required conditions for particle acceleration and that the shock discontinuity is mediated by collisionless plasma. At times earlier than $t_{pk}$, the trapped radiations thickens the shock transition to macroscopic scale and does not allow any particle injection. # # 1. no efficient particle acceleration before $t_{pk}$ # 2. fixed fraction $\epsilon_{rel}$ of the shock power $L_{sh}$ is placed into relatistic particles # # Total energy of relativistic particles $E_{rel}$ is proportional to the fraction of radiated optical fluence $f_{sh}$: # # $# E_{rel} \approx f_{sh} \epsilon_{rel} E_{opt} #$ # # $\epsilon_{rel} E_{opt}$ is an upper limit to the energy of accelerated particles, as $f_{sh}<1$. # # The total optical energy of shock-powered transients places an upper bound on the total gamma-ray and neutrino emission, as the relativistic particles cool quickly (**calorimetric method**). # # ## Coooling time scales # # (skip discussions on cooling time scales, **revisit later**) # # Shocks are generally radiative ($t_{cool} \ll t_{dyn}$) for $v_{sh} \lesssim 10,000-30,000$ km s$^{-1}$. # # # # For Novae: $\epsilon_{rel} \sim 0.003 - 0.01$ # **Dynamical tooling time scale:** # # $t_{dyn} \sim R_{sh} / v_{sh}$ # **Cooling times scale for radiatively cooled thermal gas**: # # $# t_{cool} = \frac{9}{128} \frac{m_p v_{sh}^2}{\Lambda n_{sh}} #$ # # at $T = T_{sh}$ and with cooling function $\Lambda$. # # At high temperatures $T \gtrsim 10^{7.3}$ K with dominating free-free cooling: # # $\Lambda \approx \Lambda_{ff} \approx 2.3 \times 10^{-27} (T_{sh}/$K$)^{1/2}$ erg cm$^3$ s$^{-1}$ # # Line emission cooling contributing at $10^5 < T < 10^{7.3}$: # # $\Lambda_{line} \approx 1.1 \times 10^{-22} (T_{sh}/$K$)^{-0.7}$ erg cm$^3$ s$^{-1}$ # # (see discussion in Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium (Princeton University Press, 2011) def t_cool(n, v_sh, T_sh): "thermal cooling time scale" lambda_ff=2.3e-27*math.sqrt(T_sh.to(u.k)) return 9.128*const.m_p*v_sh**2/lambda_ff/n_sh # **Cooling time scale PP interactions**: # # $# t_{pp} \approx \left( n \sigma_{pp} c \right)^{-1} #$ # # ($\sigma_{pp} = 5 \times 10^{-26}$ cm$^2$ at 1 PeV) def t_pp(n, sigma_pp=5.e-25*u.cm**2): "cooling time scale pp interactions" return 1./n/sigma_pp/const.c