
Tape Server’s Handbook

CAStor development team

June 20, 2017

CAStor Tape Server Documentation
Issue : 1
Revision : 0
Reference : http://www.cern.ch/castor
Created : Wed July 3rd, 2013
Last modified : June 20, 2017

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
CONTENTS

Contents

Preface 3

1 Developer’s manual 4

1.1 Requirements . 4

1.1.1 Targeted environment . 4

1.1.2 Pre-existing requirements . 4

1.1.3 Extra requirements . 6

1.2 Tape server architecture . 6

1.3 Reference documentations . 7

1.3.1 SCSI specifications . 7

1.3.2 SCSI support in Linux . 8

1.3.3 Unsorted CAStor docs . 9

1.3.4 SCSI tape support in Linux (st driver) . 9

1.4 Tools used during development . 9

1.4.1 Required tools for build . 9

1.4.2 Tools used during development . 9

1.4.3 Code coverage using lcov . 9

1.5 Data transfer session step by step . 10

1.6 Software layout . 11

1.6.1 SCSI structures, constants and endianness . 11

1.6.2 Exceptions hierarchy and error handling strategy 12

1.6.3 Non-fatal warnings strategy . 13

1.6.4 The Tape::Drive object . 13

1.6.5 The Tape::File class . 17

1.6.6 FIFOs . 21

1.6.7 Disk client library . 21

1.6.8 VDQM client library . 21

1.6.9 VMGR client library . 21

1.6.10 Stager/TapeGateway client library . 21

1.6.11 Logging system client library . 21

page 2

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
CONTENTS

1.6.12 Application architecture . 22

1.6.13 How to interpret the exit code of the mount-session child process 25

1.7 Compilation instructions . 25

2 Administrator’s manual 28

2.1 User and capabilities . 28

2.2 Pending questions . 28

page 3

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
CONTENTS

Preface

The Tape server project is targeted at replacing the CAStor tape server with a new drop-in reimplementa-
tion. The reimplementation will replace a legacy implementation that is written in C.

The reimplementation will be done using the latest tools available to us in the current Scientific Linux
distribution. The language will be C++, to group concept and variables in self-contained (and unit testable)
objects.

The interface to the mounting deamons might still change with repect to CAStor 2.1.14 as the mounting
daemons are being reviewed in parallel.

This documentation itself currently references the older tape server this project is intending to replace. The
references will have to be removed as they become unnecessary. Likewise, the layout of the document will
be adapted.

The tape drive primitives have now been developed, and the rest of the project’s plan is being laid out.

page 4

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

Chapter 1

Developer’s manual

1.1 Requirements

1.1.1 Targeted environment

CERN SLC5 and SLC6, 64bits. Although it should compile in theory, the 32 bits version is not tested. The
unit test purposely returns an error when run on non-64 bits architecture.

1.1.2 Pre-existing requirements

The new tape server (software) will have to replace the software running on a tape server (computer). A
previous analysis describes the current software stack of the tape servers 1. This new tape server will retain
the same external interfaces as the old tape server, replacing the stack of daemons from the tape bridge
down to the tape drive hardware.

The tape server will interface with the Volume and Drive Queue Manager daemon (vdqmd), the Volume
manager daemon (vmgrd), the Castor User Privilege Validation daemon (cupvd) and tape gateway daemon
(tapegatewayd) for data transfer management and access control.

It will connect to the CAStor disk servers to transfer the data itself, using one of the supported protocols
(current candidates are rfio, xroot and ceph) and it will use the services of the Remote Media Changer
daemon (rmcd) to mount and unmount tapes.

1.1.2.1 Tape session triggering

The tape server acts as a server only on one occasion, when it receives a client info request from the
VDQM. This call triggers a tape session, recall or migrate. The information received at that point is only
client system information and drive information (request ID, host, port, DGN, tape drive name and user
information (user id, etc...)).

The main thread of the tape server will then just forks (and maybe exec, to be decided (TODO)) a new
process, which will handle the session and quit.

A new session starts with the tape server connecting with the client (it could be the tape gateway, or one
of the command line commands of castor (currently packages in castor-tapebridge-client: readtp, writetp,
dumptp). In the case of the tape gateway, it can be either a read or a write session.

The collaboration diagrams of the previous version of the tape server (with all its sub components) can be
found in dot format 2.

1 http://svn.cern.ch/guest/CASTOR/CASTOR2/trunk/castor/tape/doc/TapeBridge.pdf
2 http://svn.cern.ch/guest/CASTOR/CASTOR2/trunk/castor/tape/doc/collaboration diagrams/

page 5

http://svn.cern.ch/guest/CASTOR/CASTOR2/trunk/castor/tape/doc/TapeBridge.pdf
http://svn.cern.ch/guest/CASTOR/CASTOR2/trunk/castor/tape/doc/collaboration_diagrams/

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

The new sequencing of a session start, simplified from the internal component communication is shown
here:

vmgrd vdqmd tapeserverd(main) tapeserverd(child) client(gateway or command line)

get volume

tape VID

vdqm request/volume stuff

VDQM request ID

schedule

unitStatus(UP)

schedule

VDQM CLIENTINFO

fork
Volume request

Proceed with session

At that point, already two client libraries are in use in the tape server: the tape gateway protocol client
library and the vdqm client library, and a simple server, answering only one type or requests:

• The client library for the tape gateway is implemented using the UML/umbrello based serialisation
system. It is contained in the castor::tape::tapebridge::ClientProxy class in CAS-
tor.

• The direct C client API in CAStor’s h/vdqm_api.h.

• The VDQM request handler is implemented in the server class
castor::tape::tapebridge::VdqmRequestHandler.

1.1.2.2 Tape session startup

Upon reception of the session request, the tape server checks that it can continue with the session:

• with VMGR the volume status and block size. A disabled volume can only be mounted by a
TP OPER (this information is retrieved from cupv).

• In case of a write session, it queries the pool info know the owner. If user is not the owner or ADMIN,
refuse the mount.

page 6

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

Then reports are sent:

• Reports to VDQM that the drive is assigned. (VDQM UNITSTATUS).

• Requests work to be done from the client to prevent useless mounts (and start caching data in case
of migration.

• Mounts the tape, rewinds and validates the volume label.

• Reports to VMGR that the volume is mounted (VMGR_TPMOUNTED).

• Reports to the VDQM that the tape is mounted (VDQM UNITSTATUS).

This part adds the vmgr client and the rmcd client.

TODO: bad day scenario.

1.1.2.3 Work loop

The work loop will be a 4 step pipelined operation where:

• The work to be done FIFO gets topped up continuously by a thread (using bulk)

• The data FIFO(s) is(are) filled up by the reader (tape thread or disk thread).

• The data FIFO consumer (opposite)

• The results are reported by either the control thread or a specialized thread (using bulk).

1.1.2.4 Release tape

1.1.3 Extra requirements

Additional requirements, arising from the current practices of operators are:

• The tape server’s session should gracefully handle an unclean situation where the tape is left in the
drive by a previously crashed session. The protocol is to clean anything left over before proceeding
to the new session.

• A tape sessions should be preemptable by the operator. This is currently achieved by killing the tape
process. Closing the session on a kill (-1) could be a solution.

• The operator should be able to specify values in different SCSI code pages in order to setup the tape
drive. This setting will be defined differently for each tape drive type.

1.2 Tape server architecture

To fulfil the requirement for an ability to kill a session, the main tape server daemon will be simple, and
just report its status to the VDQM and wait for requests from it on an open port.

When a tape mount should start, the process will fork a child process, which will reserve the memory and
instantiate the tape mount machinery.

The layout of the main process is show in figure 1.1. The layout of the child process, which contains all
the complexity is shown in figure 1.2.

The data path will go to/from tape drive, through the generic SCSI interface of st driver (CAStor uses a
mixture of both in the Tape::Drive class), then through the File structure support classes, as controlled by

page 7

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

Tape server (parent process)

VDQM

client

VDQM responder

(server)

Session spawner

Figure 1.1: Tape server parent process: libraries used (purpose built libraries in blue, system libraries in
beige, already existing CAStor libraries in green)

the tape thread. The tape thread will communicate the data to (or get from) the disk threads via the data
FIFO class. This class will in turn allocate the memory from a preallocated, pool of fixed sized blocks. The
size of the pool will be controlled by the operators.

The file structure support classes will be arranged in two layers, with two distinct implementations for read
and write. The lower layer, the session will be stateful, and validate that the conditions are correct before
operations (correct tape is identified in the drive thanks to volume label, and proper position is confirmed
thanks to last file trailer before writing). Positioning can also be optimized if file to file information is
retained (mostly, we should avoid repositioning between consecutive files when reading).

Some libraries already exist in CAStor, and will be reused, either by copying or linking from pre-compiled
packages. The main parts of the sessions spawner will be taken from the VDQM as well.

1.3 Reference documentations

1.3.1 SCSI specifications

The SCSI commands can be found in the SCSI section of Hackipedia.org 3 4. The most significant docu-
ments for tape server development are the SCSI stream commands (SSC-3 5) and the SCSI primary com-
mands (SPC-4 6 7).

1.3.1.1 Manufacturer’s specificities

The SCSI specification allows for some flexibility for the manufacturers of tape drives, and each of them
has differences. The details can be found in the following documentations:

• StorageTekTMT10000 Tape Drive 8

• Sun StorageTekTMT10000 Tape Drive Fibre Channel Interface Reference Manual 9

• IBM System Storage TS1120 and TS1130 Tape Drives and TS1120 ControllerOperator Guide3592
Models J1A, E05, E06, EU6, J70 and C06 10

3 http://hackipedia.org/Hardware/SCSI/
4The official site for SCSI standard is http://T10.org. All specifications can be found there in their approved version, but behind

a paywall. Nevertheless all previous drafts were public and can conveniently be found on the web. Hackipedia hold a very nice
collection of such documentations.

5 http://hackipedia.org/Hardware/SCSI/Stream%20Commands/SCSI%20Stream%20Commands%20-%203.pdf
6 http://hackipedia.org/Hardware/SCSI/Primary%20Commands/SCSI%20Primary%20Commands%20-%204.pdf
7 Latest drafts can be downloaded from http://www.t10.org/members/w spc4.htm
8 http://docs.oracle.com/cd/E19957-01/96174E/96174E.pdf
9 http://docs.oracle.com/cd/E19772-01/MT9259L/MT9259L.pdf

10 ftp://ftp.software.ibm.com/storage/TS1130/a86opg02.pdf

page 8

http://hackipedia.org/Hardware/SCSI/
http://T10.org
http://hackipedia.org/Hardware/SCSI/Stream%20Commands/SCSI%20Stream%20Commands%20-%203.pdf
http://hackipedia.org/Hardware/SCSI/Primary%20Commands/SCSI%20Primary%20Commands%20-%204.pdf
http://www.t10.org/members/w_spc4.htm
http://docs.oracle.com/cd/E19957-01/96174E/96174E.pdf
http://docs.oracle.com/cd/E19772-01/MT9259L/MT9259L.pdf
ftp://ftp.software.ibm.com/storage/TS1130/a86opg02.pdf

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

Tape server (child process)

V
D

Q
M

 c
li

en
t

V
M

G
R

 c
li

en
t

C
U

P
V

 c
li

en
t

Disk

server data

client

R
M

C
 c

li
en

t

T
ap

e
G

at
ew

ay
 c

li
en

t

Threading library

Tape::Drive

Tape::File

Memory block

Manager

Data FIFO

Tape Thread Disk Thread

Session Manager

st
 d

ri
v
er

G
en

er
ic

S
C

S
I

io
ct

l

L
o

g
g
in

g

Figure 1.2: Tape server child process: libraries used (purpose built libraries in blue, system libraries in
beige, already existing CAStor libraries in green)

• IBM System Storage Tape Drive 3592 SCSI Reference 11

• IBM TotalStorage LTO Ultrium Tape Drive SCSI Reference (LTO-5 through LTO-6) 12

1.3.2 SCSI support in Linux

On the Linux side, the main references are the Linux 2.4 SCSI subsystem HOWTO 13, especially for its
section 9.3 on the st driver, and the Linux SCSI Generic (sg) HOWTO 14.

More details regarding the Generic SCSI driver can be found on the SCSI subsystem maintainer’s web site
15.

The section on the SG IO ioctl, 16 details the usage of the simplest ioctl for the generic SCSI driver, which
allows the invocation of a SCSI command and the collection of the result in a single system call.

This ioctl is provided in the middle layer of the SCSI subsystem of Linux. All SCSI drivers, st included,
fall back to the middle layer when encountering an unknown ioctl. This means there is no need to open the
matching generic SCSI, unless we want to control command queueing with separate sending of commands
and result collection, which requires the use of read and write calls from the generic SCSI (sg) driver.

11 http://www-01.ibm.com/support/docview.wss?uid=ssg1S7003248&aid=1
12 http://www-01.ibm.com/support/docview.wss?uid=ssg1S7003556&aid=1
13 http://mirrors.kernel.org/LDP/HOWTO/pdf/SCSI-2.4-HOWTO.pdf
14 http://mirrors.kernel.org/LDP/HOWTO/pdf/SCSI-Generic-HOWTO.pdf
15 http://sg.danny.cz/sg/
16 http://sg.danny.cz/sg/sg io.html

page 9

http://www-01.ibm.com/support/docview.wss?uid=ssg1S7003248&aid=1
http://www-01.ibm.com/support/docview.wss?uid=ssg1S7003556&aid=1
http://mirrors.kernel.org/LDP/HOWTO/pdf/SCSI-2.4-HOWTO.pdf
http://mirrors.kernel.org/LDP/HOWTO/pdf/SCSI-Generic-HOWTO.pdf
http://sg.danny.cz/sg/
http://sg.danny.cz/sg/sg_{}io.html

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

1.3.3 Unsorted CAStor docs

A collection of links to various documentations written in the past is available on one of CAStor’s web
pages 17.

1.3.4 SCSI tape support in Linux (st driver)

Generic SCSI allows detailed control of the operations, but the bulk of them (including reading and writing)
can be managed by the higher level SCSI tape (or st) driver provided by the Linux kernel. More information
on the st driver can be found in the man page ”st” and in Documentation/scsi/st.txt in the
sources of the kernel.

1.4 Tools used during development

1.4.1 Required tools for build

• GCC/G++ (Basic SLC version)

• CMake (Basic SLC version)

• rpmbuild (Basic SLC version)

• Google Mock/Google test (GTest is provided in EPEL repository for SLC. GMock requires recom-
pilation. The source RPMs can be found for newer versions of RPM based distributions, for example
from rpmfind 18. For convenience, they are also available on AFS as a temporary solution 19.

• Valgrind (Basic SLC version)

• LATEX(Basic SLC version) to compile this document

• Doxygen for code documentation (Basic SLC version)

1.4.2 Tools used during development

• mhvtl 20 for developing against virtual drives and libraries (to enable mhvtl kernel debug output to
dmesg opts=3 have to be used for kernel module options, i.e. modprobe mhvtl opts=3).

• TeamCity for continuous integration

• NetBeans as an IDE, including for remote development

1.4.3 Code coverage using lcov

Although the code coverage is not integrated in the build process, it is straightforward to run on the code.
The following recipe will deliver a set of web pages indicating which parts of the code are covered or not
in the unit tests. The lcov package is required. It is only available on SLC6, and can be installed via yum.

• Change the main CMakeFiles.txt as in this diff:

17 http://castorwww.web.cern.ch/castorwww/links.htm
18 http://rpmfind.net/linux/rpm2html/search.php?query=gmock
19 /afs/cern.ch/user/c/canoc3/public/GoogleTest-Mock
20 https://sites.google.com/site/linuxvtl2/

page 10

http://castorwww.web.cern.ch/castorwww/links.htm
http://rpmfind.net/linux/rpm2html/search.php?query=gmock
https://sites.google.com/site/linuxvtl2/

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

Index: CMakeLists.txt
===
--- CMakeLists.txt (revision 76)
+++ CMakeLists.txt (working copy)
@@ -45,7 +45,8 @@
###
compiler options
###
-set (CMAKE_CXX_FLAGS "-g3 -Wall -Werror -pedantic -O2")
+set (CMAKE_CXX_FLAGS "-g3 -Wall -Werror -pedantic -O2 --coverage")
+set (CMAKE_LD_FLAGS "--coverage")

###
dependancies

• Re-run cmake, recompile as usual and run the unit test.

• Capture the result:

lcov --capture --directory 00build/ --output-file 00build/coverage.info.

• Generate the resulting html pages:

genhtml 00build/coverage.info --output-directory 00build/coverage.

1.5 Data transfer session step by step

The following sequence describes when and what the different components of castor communicate while a
data transfer if occurring

1. Tape operator runs ”readtp V12345” -n 1 or ”writetp V12345 /etc/group”
2. readtp/writetp queries vmgrd for information about the the tape with volume identifier V12345
3. readtp/writetp queries cupvd to determine whether or not the tape operator really has the TP OPER

privilege
4. readtp/writetp aborts if the tape is DISABLED and the tape operator does not have the TP OPER

privilege
5. readtp/writetp aborts if the tape is either EXPORTED or ARCHIVED
6. readtp/writetp binds a TCP/IP listening socket ready for callbacks from a mount-session child-

process of tapeserverd
7. readtp/writetp requests vdqmd to allocate it a free drive in the same DGN as tape V12345 - readtp

sends its callback port in the request
8. The RequestHandlerThread of vdqmd stores the readtp/writetp request in the database
9. The DriveSchedulerThread of vdqmd allocates a free drive to the readtp/writetp request

10. The RtcpJobSubmitterThread of vdqmd sends a job to tapeserverd
11. tapeserverd checks that the vdqms hostname is in the ADMIN HOSTS parameter of /etc/castor/cas-

tor.conf
12. tapeserverd forks a mount-session child-process.
13. The TapeDaemon::forkMountSession() function of the child process asks the vdqmd daemon to

assign the process ID to the drive.

• VdqmProxy::assignDrive()

14. The child process creates the MountSession object and calls MountSession::execute().
15. mount-session asks readtp/writetp for the details of the mount (tapegateway::Volume)
16. mount-session sends the mount details (tapegateway::Volume) to the tapeserverd parent process

• TapeserverProxy::gotReadMountDetailsFromClient()

• TapeserverProxy::gotWriteMountDetailsFromClient()

page 11

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

17. If writing to tape and the client is the tapegatewayd daemon then the tapeserverd parent process
checks with the vmgrd daemon that the tape is marked as BUSY. A tape is marked as busy as a
result of the tapegatwayd daemon calling vmgr gettape().

18. mount-session asks readtp/writetp for the first file to be recalled or migrated
19. mount-session requests rmcd to mount the tape - the request is synchronous

• RmcProxy::mountTape()

20. mount-session checks with the drive that the tape has been mounted
21. mount-session notifies the tapserverd parent process that the tape has been mounted

• TapeserverProxy::tapeMountedForRead()

• TapeserverProxy::tapeMountedForWrite()

22. tapeserverd via MountSessionAcceptHandler::handleIncomingUpdateDriveJob() notifies the vm-
grd daemon that the tape has been mounted

• VmgrProxy::tapeMountedForRead()

• VmgrProxy::tapeMountedForWrite()

23. tapeserverd via MountSessionAcceptHandler::handleIncomingUpdateDriveJob() notifies the
vdqmd daemon that the tape has been mounted

• VdqmProxy::tapeMounted()

24. mount-session recalls/migrates and requests more files until gateway::NoMore
25. mount-session unloads tape from drive
26. mount-session requests rmcd to unmount the tape - the request is synchronous

• RmcProxy::unmountTape()

27. mount-session notifies tapeserverd the tape has been unmounted - currently this is not used

• TapeserverProxy::tapeUnmounted()

28. mount-session terminates with the success value of 0
29. tapeserverd reaps the zombie mount-session
30. tapeserverd parent-process marks the drive as FREE
31. tapeserverd via TapeDaemon::postProcessReapedDataTransferSession() notifies vdqmd that it is

releasing the tape

• VdqmProxy::releaseDrive(forceUnmount)

32. tapeserverd via TapeDaemon::postProcessReapedDataTransferSession() notifies vdqmd the tape
has been unmounted

• VdqmProxy::tapeUnmounted()

1.6 Software layout

1.6.1 SCSI structures, constants and endianness

In order to make the code readable, and to avoid heavy mask-and-shift usage (which one would tend to
code using litterals in order to avoid many constants definitions), we use bit field structures. The unused
fields can be left anonymous. The definition is shown in listing 1.1, and usage in listing 1.2. As there could
be endianness issues, we limit this usage to within bytes. Fortunately, the SCSI standard nicely adheres to
this rule.

The unit test resorts to shift and mask, once and only once, to validate the bit fields in another way. There
is an example for this validation in SCSI/StructureTest.cc an excerpt is in listing 1.3.

Other common types in the SCSI specification are multi-bytes number, which are represented by
unsigned char[2/* (or 4)*/] and handled by helper functions toU16() and toU32(). The
helper functions conveniently use ntoh{l|s}, as SCSI and network orders are the same. The reverse is

page 12

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

1 namespace SCSI {
2 namespace Structures {
3

4 /*
5 * Inquiry data as described in SPC-4.
6 */
7 typedef struct {
8 unsigned char perifDevType : 5;
9 unsigned char perifQualifyer : 3;

10

11 unsigned char : 7;
12 unsigned char RMB : 1;
13

14 unsigned char version : 8;
15

16 unsigned char respDataFmt : 4;
17 unsigned char HiSup : 1;
18 unsigned char normACA : 1;
19 unsigned char : 2;
20 [...]
21 } inquiryData_t;
22 }
23 }

Listing 1.1: SCSI::Structures example

covered by setU16() and setU32(). Another helper function takes care of string extraction from fixed
sized char arrays. See listing 1.4.

Those arrays are space-padded, and may not be 0 terminated. It is seen in listing 1.2. The helper function
extracts the string, dealing with potential zeros at the end, and the fixed length. They keep the space-
padding at the end of the extracted string.

To avoid literals in the code, which forces anyone reading it to do tedious lookups, the SCSI constants are
also defined as constants in the code. See listing 1.5.

Finally all structures have a constructor, which at least zeroes all the data. Some structures (typically the
CDBs, where the first byte is the operation’s code) automatically set the value of fields which can only
have one value. Helper functions are created as needed, where accessing/setting the data in the structure
requires non-trivial processing (and when the case is not covered by the common tools handling strings
that endianness).

1.6.2 Exceptions hierarchy and error handling strategy

There is a small class hierarchy for exceptions: Tape::Exception inherits from std::exception,
and Tape::Exceptions::Errnum inherits from the latter. Tape::Exceptions::Errnum man-
ages the errnos. It collects the errno value and turns it into a string automatically at construction time.

Tape::Exception and all its heirs automatically generate a stack trace at creation time. This allows
easy tracing of unhandled exceptions, as the stack trace is embedded in the content of the what() method.
For the cases where the exception is indeed handled, a shorter version called shortWhat() allows the
logging of the problem without bloating the logs with long stack traces.

Another exception class, SCSI::Exception, turns the SCSI status and sense buffer into a
user readable string. In addition, a helper exception thrower function avoids code repetitions
(ExceptionLauncher()).

Throughout the project, the error handling strategy is to throw an exception when any error condition
occurs. This ensures that any returned value is valid, and prevents the calling function from testing for

page 13

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

1 SCSI::Structures::inquiryData_t & inq = *((SCSI::Structures::
inquiryData_t *) dataBuff);

2 std::stringstream inqDump;
3 inqDump << std::hex << std::showbase << std::nouppercase
4 << "inq.perifDevType=" << (int) inq.perifDevType << std::endl
5 << "inq.perifQualifyer=" << (int) inq.perifQualifyer << std::

endl
6 [...]
7 << "inq.T10Vendor=" << SCSI::Structures::toString(inq.

T10Vendor) << std::endl
8 << "inq.prodId=" << SCSI::Structures::toString(inq.

prodId) << std::endl
9 << "inq.prodRevLv=" << SCSI::Structures::toString(inq.

prodRevLvl) << std::endl
10 << "inq.vendorSpecific1="<< SCSI::Structures::toString(inq.

vendorSpecific1)<< std::endl

Listing 1.2: SCSI::Structures usage example

error conditions. The default exception throwing is coming from a narrow set of exceptions types. This
gives a crude exception handling capacity to the user of the functions. When finer grained exceptions will
turn out to be required, we will add them on an as needed basis.

1.6.3 Non-fatal warnings strategy

We want to deliver an interface, preferably common, to most object where the non-fatal problems are
recorded (with time of occurrence) and stored for further retrieval by upstream caller. This allow developers
to deal with the logging interface only in the top ”application” class which glues all the bricks of the project
together.

A lower level failure (exception) could also be turned into a warning by a higher level retry.

TODO: define API.

1.6.4 The Tape::Drive object

This first deliverable is a tape drive object. This tape drive object abstracts all SCSI and technical details
and provides a high level interface, to be used by the file structure layer.

It will provide as much data safety as possible by blocking writes in situations where they are not safe (to
be defined in details, but the most obvious is right after positioning, as the file layer is expected to check
the position by reading the trailer of the previous file before writing.

The SCSI commands and st driver’s functions used in previous software (CAStor’s taped/rtcpd) are:

• Individual SCSI commands sent using generic SCSI:

– Read status (inquiry SCSI command used by posovl)

– Read serial number (inquiry SCSI command, asking for vital product data page 0x80)

– Locate (locate(10) SCSI command: 32 bits logical object identifiers) 21

– Read position (read position SCSI command – short form): get the current logical object loca-
tion (a.k.a. block ID).

21There is also a locate(16) command allowing 64 bis addresses. This might become necessary as tapes grow. Discounting the
per-file overhead, with 256kB block, it still takes 1PB to get 232 blocks.

page 14

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

1 namespace UnitTests {
2 TEST(SCSI_Structures, inquiryData_t_multi_byte_numbers_strings) {
3 /* Validate the bit field behavior of the struct inquiryData_t,
4 which represents the standard INQUIRY data format as defined in
5 SPC-4. This test also validates the handling of multi-bytes numbers,
6 as SCSI structures are big endian (and main development target is
7 little endian. */
8 unsigned char inqBuff [100];
9 memset(inqBuff, 0, sizeof(inqBuff));

10 SCSI::Structures::inquiryData_t & inq = *((SCSI::Structures::inquiryData_t

*) inqBuff);
11 /* Peripheral device type */
12 ASSERT_EQ(0, inq.perifDevType);
13 inqBuff[0] |= (0x1A & 0x1F) << 0;
14 ASSERT_EQ(0x1A, inq.perifDevType);
15

16 /* Peripheral qualifier */
17 ASSERT_EQ(0, inq.perifQualifyer);
18 inqBuff[0] |= (0x5 & 0x7) << 5;
19 ASSERT_EQ(0x5, inq.perifQualifyer);
20 [...]
21 }
22 }

Listing 1.3: SCSI::Structures usage example

1 SCSI::Structures::uint32_t toU32(const char(& t)[4]);
2 SCSI::Structures::uint32_t toU32(const char(& t)[4]);
3

4 template <size_t n>
5 std::string toString(const char(& t)[n]);

Listing 1.4: SCSI::Structures helper functions

1 namespace SCSI {
2 class Commands {
3 public:
4 enum {
5 /*
6 * SCSI opcodes, taken from linux kernel sources
7 * Linux kernel’s is more complete than system’s
8 * includes.
9 */

10 TEST_UNIT_READY = 0x00,
11 REZERO_UNIT = 0x01,
12 REQUEST_SENSE = 0x03,
13 [...]

Listing 1.5: SCSI::Constants

page 15

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

– Log select (for clearing compression stats page. The function clear compression stats actually
does a blanket reset of all statistics. It sets the PCR/SP/PC combination to 1/0/3. The basic
SCSI specification states that the value pf PC is not important, but for the T10000 drives, the
documentation recommends PC=11b, which we have for all drives.

– Log sense, to read the compression pages. This is device dependant. The code covers 5 blocks
of device types: DAT, DLT-SDLT-LTO, IBM(3490, 3590, 3592), StorageTek RedWood(SD3),
StorageTek(9840, 9940, T10000).

– Log sense for page 0x2E (tape alert, as defined in SSC-3) on all modern tape drives to detect
tape alerts.

– Mode sense and Mode select was used in setdens called itself by mounttape. They get the drive
parameters and set density and compression parameters based on the drive type and the density
requested by the caller. On all modern tape drives, the compression page is 0x10. This will be
replaced by the function Tape::Drive::setCompressionAndDensity().

• st driver’s commands, leading to internal variables setting or SCSI actions:

– Get internal driver state via the MTIOCGET ioctl (for drive ready, write protection, get some
error condition, when MTIOSENSE failed, to get the EOD, BOT bits (readlbl)). This function-
ality is covered by Drive::getDriveStatus.

– Try and get the sense data for the last-ish command with MTIOSENSE. This relies on a CERN-
made patch. As the patch is not available in SLC6, MTIOSENSE will not be used in this
project. This is also covered Drive::getDriveStatus.

– Setup the driver’s parameters (MTIOCTOP/MTSETDRVBUFFER) for (un)buffered writes and
asynchronous writes (in confdrive, a child process of taped). This option is currently not set in
production environments.

– Jump to end of media (before rewinding, as a mean to rebuild the MIR) (MTIOCTOP/MTEOM,
with some MTIOCTOP/MTSETDRVBUFFER before, in repairbadmir). The setting of the
driver buffer is used to set the boolean flag MT ST FAST MTEOM to 0. If not, the mt driver
uses a nasty trick asks the device to skip 0x7fffff files forward. The comment in the CAStor
code claims it’s 32k files, but 223−1 is indeed 8M files. Anyway, after turning off the option, the
st driver reverts to telling the SCSI device to space to end of data. This behavior is documented
in the IBM’s operator manual mentioned in 1.3.1.1, on page 53 for tape alert 18 (Tape directory
corrupted on load).
It is not mentioned for other tape server’s documentations. Specifically, StorageTek only lists
operator-initiated methods for MIR rebuild.
Nevertheless, we will still issue this operation in all drives as it is not known if it works in
practice for StorageTek drives (or others).

– Rewind (MTIOCTOP/MTREW, in rwndtape).
– Skip to end of data (MTIOCTOP/MTEOM, in skip2eod, without the trick of repairbadmir).
– Skip n file marks backwards (MTIOCTOP/MTBSF, in skiptpfb).
– Skip n file marks forward (MTIOCTOP/MTFSF, in skiptpff).
– Skip n file marks forward (MTIOCTOP/MTFSF, in skiptpfff). skiptpfff and skiptpff differ only

by error reporting. Both functions exists since CAStor has been put in SVN (20/07/1999)
– Skip n blocks backwards (MTIOCTOP/MTBSR, in skiptprb).
– Skip n blocks forward (MTIOCTOP/MTFSR, in skiptprf).
– Unload the tape (MTIOCTOP/MTOFFL, in unldtape).
– Write synchronous file mark(s) (tape marks in CAStor jargon) (MTIOCTOP/MTWEOF, in

wrttpmrk).
– Write immediate (asynchronous file marks (MTIOCTOP/MTWEOFI, also in wrttpmrk).
– Clear the EOT condition by calling MTIOCGET. This is done in wrttrllbl, 3 times. In MTI-

OCGET, indeed, a member of the scsi tape structure called recover reg is reset to 0. This
clearing is used to properly report errors in label writing functions. The usefulness of this
function is dubious and it is not included in the current API.

page 16

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

1 namespace Tape {
2 class Drive {
3 public:
4 Drive(SCSI::DeviceInfo di, System::virtualWrapper & sw);
5 /* Direct SCSI operations */
6 virtual compressionStats getCompression() throw (Exception);
7 virtual void clearCompressionStats() throw (Exception);
8 virtual deviceInfo getDeviceInfo() throw (Exception);
9 virtual std::string getSerialNumber() throw (Exception);

10 virtual void positionToLogicalObject(uint32_t blockId) throw (Exception);
11 virtual positionInfo getPositionInfo() throw (Exception);
12 virtual std::vector<std::string> getTapeAlerts() throw (Exception);
13 virtual void setDensityAndCompression(unsigned char densityCode = 0,
14 bool compression = true) throw (Exception);
15 virtual driveStatus getDriveStatus() throw (Exception);
16 virtual tapeError getTapeError() throw (Exception);
17 /* ST driver based operations */
18 virtual void setSTBufferWrite(bool bufWrite) throw (Exception);
19 virtual void fastSpaceToEOM(void) throw (Exception);
20 virtual void rewind(void) throw (Exception);
21 virtual void spaceToEOM(void) throw (Exception);
22 virtual void spaceFileMarksBackwards(size_t count) throw (Exception);
23 virtual void spaceFileMarksForward(size_t count) throw (Exception);
24 virtual void spaceBlocksBackwards(size_t count) throw (Exception);
25 virtual void spaceBlocksForward(size_t count) throw (Exception);
26 virtual void unloadTape(void) throw (Exception);
27 virtual void sync(void) throw (Exception);
28 virtual void writeSyncFileMarks(size_t count) throw (Exception);
29 virtual void writeImmediateFileMarks(size_t count) throw (Exception);
30 virtual void writeBlock(const unsigned char * data, size_t count) throw (

Exception);
31 virtual void readBlock(unsigned char * data, size_t count) throw (

Exception);
32 virtual ˜Drive()
33 };
34 } // namespace Tape

Listing 1.6: Tape::Drive interface

– Write is used in 2 places only : twrite and writelbl (which is a specialized function to write
80 bytes blocks). twrite is not checking the size of blocks, which is determined in the calling
functions.

– Read is used in tread, which is used in a single place of TapeToMemory. It is also used in
readlbl. The latter uses a trick to detect that a tape is blank. This could be turned into a
specialized function.

The interface is shown in listing 1.6.

TODO: define end of tape behavior for write (create an exception, and throw it).

TODO: define how detect a blank tape.

page 17

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

1.6.5 The Tape::File class

1.6.5.1 CAStor file format

Over time, CAStor used several file formats, but as of 2013, only one file format is used, called AUL. This
format is described an old CERN web site 22, and the general description of the ANSI fields can be found
in IBM’s z/OS documentation 23.

The AUL format consists of volume label, header blocks and trailer blocks. All those descriptors are
contained in tape blocks of 80 bytes. All data is in ASCII nowadays and empty bytes are spaces.

Table 1.1: AUL label format

VOL1 HDR1 HDR2 UHL1 TM DATA TM EOF1 EOF2 UTL1 TM
one data file

Table 1.2: AUL prelabeled tape with one HDR1

VOL1 HDR1(PRELABEL) TM

Table 1.3: The structure of the volume label

VOL1
Bytes Length Offset Content
0-3 4 0x00 Volume label indicator: the caracters ”VOL1”
4-9 6 0x04 Volume serial number (VSN) (ex: ”AB1234”)
10 1 0x0A Accessibility (In CAStor, left as space)

11-23 13 0x0B Reserved for future (spaces)
24-36 13 0x18 Implementation identifier (left as spaces by CAStor)
37-50 14 0x25 Owner identifier (in CAStor, the string ”CASTOR” or STAGESUPE-

RUSER name padded with spaces)
51-78 28 0x33 Reserved (spaces)

79 1 0x4F Label standard level (1,3 and 4 are listed as valid in IBM’s documentation.
CAStor uses ASCII ’3’)

CAStor example for the beginning of the tape:

00000000 56 4f 4c 31 56 35 32 30 30 31 20 20 20 20 20 20 |VOL1V52001 |
00000010 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | |
00000020 20 20 20 20 20 43 41 53 54 4f 52 20 20 20 20 20 | CASTOR |
00000030 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | |
00000040 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 33 | 3|

22 http://it-dep-fio-ds.web.cern.ch/it-dep-fio-ds/Documentation/tapedrive/labels.html
23 http://publib.boulder.ibm.com/infocenter/zos/v1r12/index.jsp?topic=%2Fcom.ibm.zos.r12.idam300%2Flabdef.htm

page 18

http://it-dep-fio-ds.web.cern.ch/it-dep-fio-ds/Documentation/tapedrive/labels.html
http://publib.boulder.ibm.com/infocenter/zos/v1r12/index.jsp?topic=%2Fcom.ibm.zos.r12.idam300%2Flabdef.htm

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

Table 1.4: The structure of the HDR1, EOF1 labels

HDR1, EOF1
Bytes Length Offset Content
0-3 4 0x00 Header label: the caracters ”HDR1 or EOF1”
4-20 17 0x04 File identifier: hexadecimal CAStor NS file ID. nsgetpath -x can be used

to find the CASTOR full path name. Aligned to left. In case of prelabeled
tape ’PRELABEL’ is used instead of file ID.

21-26 6 0x15 The volume serial number of the tape.
27-30 4 0x1B File section number: a number (0001 to 9999) that indicates the order of

the volume within the multivolume aggregate. This number is always 0001
for a single volume data set.

31-34 4 0x1F File sequence number: a number that indicates the relative position of the
data set within a multiple data set group (aggregate). CAStor uses modulus
for fseq by 10000

35-38 4 0x23 Generation number: ’0001’ in CAStor.
39-40 2 0x27 Version number of generation: ’00’ in CAStor.
41-46 6 0x29 Creation date: Date when allocation begins for creating the data set. The

date format is cyyddd, where: c = century (blank=19; 0=20; 1=21; etc.) yy
= year (00-99) ddd = day (001-366)

47-52 6 0x2F Expiration date: year and day of the year when the data set may be
scratched or overwritten. The data is shown in the format cyyddd. It is
always advisable to set the expiration date when a volume is being ini-
tialised (’prelabelled’) to be a date before the current date, so that writing
to the tape is immediately possible.

53 1 0x35 Accessibility: a code indicating the security status of the data set and
’space’ means no data set access protection.

54-60 6 0x36 Block count: This field in the trailer label shows the number of data blocks
in the data set on the current volume. This field in the header label is always
’000000’.

60-72 13 0x3C System code of creating system: a unique code that identifies the system.
CASTOR with CASTOR BASEVERSION number string.

73-79 7 0x49 Reserved

CAStor example for the second file on the tape:

00000000 48 44 52 31 31 32 41 31 36 30 43 33 38 20 20 20 |HDR112A160C38 |
00000010 20 20 20 20 20 56 35 32 30 30 31 30 30 30 31 30 | V5200100010|
00000020 30 30 32 30 30 30 31 30 30 30 31 32 30 34 31 30 |0020001000120410|
00000030 31 32 30 34 31 20 30 30 30 30 30 30 43 41 53 54 |12041 000000CAST|
00000040 4f 52 20 32 2e 31 2e 31 32 20 20 20 20 20 20 20 |OR 2.1.12 |

CAStor example for the empty tape with PRELABEL and one HDR1 is used:

00000000 56 4f 4c 31 56 35 32 30 30 31 20 20 20 20 20 20 |VOL1V52001 |
00000010 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | |
00000020 20 20 20 20 20 72 6f 6f 74 20 20 20 20 20 20 20 | root |
00000030 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | |
00000040 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 33 | 3|
00000050 48 44 52 31 50 52 45 4c 41 42 45 4c 20 20 20 20 |HDR1PRELABEL |
00000060 20 20 20 20 20 56 35 32 30 30 31 30 30 30 31 30 | V5200100010|
00000070 30 30 31 30 30 30 31 30 30 30 31 33 32 33 34 30 |0010001000132340|
00000080 31 33 32 33 34 20 30 30 30 30 30 30 43 41 53 54 |13234 000000CAST|
00000090 4f 52 20 32 2e 31 2e 31 33 20 20 20 20 20 20 20 |OR 2.1.13 |

page 19

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

Table 1.5: The structure of the HDR2, EOF2 labels

HDR2, EOF2
Bytes Length Offset Content
0-3 4 0x00 Header label: the caracters ”HDR2 or EOF2”
4 1 0x04 Record format. An alphabetic character that indicates the format of the

records in the associated data set. For the AUL it could be only: F - fixed
length (U - was used for HDR2 for prelabeled tapes)

5-9 5 0x05 Block length in bytes (maximum). For the block size greater than 100000
the value is 00000.

10-14 5 0x0A Record length in bytes (maximum). For the record size greater than 100000
the value is 00000.

15 1 0x0F Tape density. Depends on the tape density values are following: ’2’ for
D800, ’3’ for D1600, ’4’ for D6250

16-33 18 0x10 Reserved
34 2 0x22 Tape recording technique. The only technique available for 9-track tape

is odd parity with no translation. For a magnetic tape subsystem with Im-
proved Data Recording Capability, the values are: ’P ’- Record data in
compacted format, ’ ’ - Record data in standard uncompacted format. For
CASTOR is is ’P’ if the drive configured to use compression (i.e. xxxGC)

35-49 14 0x24 Reserved
50-51 2 0x32 Buffer offset ’00’ for AL and AUL tapes
52-79 28 0x34 Reserved

CAStor example for the first file on the tape:

00000000 48 44 52 32 46 30 30 30 30 30 30 30 30 30 30 20 |HDR2F0000000000 |
00000010 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | |
00000010 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | |
00000030 20 20 30 30 20 20 20 20 20 20 20 20 20 20 20 20 | 00 |
00000040 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | |

page 20

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

Table 1.6: The structure of the UHL1, UTL1 labels

UHL1, UTL1
Bytes Length Offset Content
0-3 4 0x00 User header label: the caracters ”UHL1 or UTL1”.
4-13 10 0x04 Actual file sequence number (’0’ padded from left).

14-23 10 0x0E Actual block size (’0’ padded from left).
24-33 10 0x18 Actual record length (’0’ padded from left).
34-41 8 0x22 Site : a part of the domain name uppercase.
42-51 10 0x2A Tape mover host name uppercase without domain name.
52-59 8 0x34 Drive manufacturer.
60-67 8 0x3C Drive model (first 8 bytes from the field PRODUCT IDENTIFICATION in

the SCSI INQUIRY replay).
68-79 12 0x44 Drive serial number.

CAStor example for the second file on the tape:

00000000 55 48 4c 31 30 30 30 30 30 30 30 30 30 32 30 30 |UHL1000000000200|
00000010 30 30 32 36 32 31 34 34 30 30 30 30 32 36 32 31 |0026214400002621|
00000020 34 34 43 45 52 4e 20 20 20 20 4c 58 43 32 44 45 |44CERN LXC2DE|
00000030 56 35 44 32 53 54 4b 20 20 20 20 20 54 31 30 30 |V5D2STK T100|
00000040 30 30 42 20 58 59 5a 5a 59 5f 42 31 20 20 20 20 |00B XYZZY_B1 |

1.6.5.2 File block management

Some files tapes have mixed block sizes, some files used to have mixed block sizes. Current proposal is to
have a fixed block size per tape, and to have operators choose the optimal block size for drive performance
(too small blocks reduce performance).

Currently 256kB is used everywhere, so hardcoding this block size for writing to this value is an acceptable
for the time being. On the long run, this should be a configurable parameter by the operators.

Ideally, only the Tape::File class should handle all aspects of cutting the disk file, which is a continuous
stream, into fixed size blocks. But this would have the downside of having the Tape::File class a client
of the FIFOs, and potentially have its own thread, which is far beyond the scope of this class. Therefore,
it is the duty of the caller to provide the file cut into fixed size blocks. The Tape::File class will require
pre-declaration of the block size, and enforce it.

1.6.5.3 Responsibilities of the class

This class will have the responsibility to check file structure and content, including checksum, block sizes
and header/trailer content. In case of non-fatal errors, the warnings will be reported through the warning
interface described in 1.6.3.

1.6.5.4 Checksums

The checksum in CAStor uses the Adler32 checksum. Adler32 can be computed incrementally on a stream
of data. The zlib contains an implementation of adler32 24. The checksum will be computer automatically
when writing or reading the file to tape. Reading a file with a wrong checksum will throw an exception.
TODO: define writing behavior (is the checksum pre-declared?).

24http://www.zlib.net/manual.html#Checksum

page 21

http://www.zlib.net/manual.html#Checksum

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

1.6.5.5 Tape::File API

TODO.

1.6.6 FIFOs

FIFOs will be used to synchronize the data transfer between the tape thread and disk threads. The Tape
thread will manage the block-to-stream transformation. The FIFO might not always be able to provide
blocks in one piece at chunk boundary. The first attempt solution for this case will be a copy of the cut
block. With a chunk size significantly bigger than the block size, the event should be rare enough to not
affect performance. FIFOs will probably need some thread safety, but as they will be single user, single
consumer, some parts might possible be lockless.

1.6.7 Disk client library

Castor is dropping rfio and is moving to xroot. The effects on the code are to be discussed with Sebastien.

1.6.8 VDQM client library

TODO: describe how we will link with the VDQM client library. The VDQM is also the initial client which
triggers the tape sessions. It carries a feature where the tape drive can recycle a tape mount. This is not very
useful today, and the first release of the TapeServer will not support it. All sessions will be force-closed by
the TapeServer.

1.6.9 VMGR client library

1.6.10 Stager/TapeGateway client library

1.6.11 Logging system client library

In case of failure, operators need to have logs filles as much as possible. Thus, castor has an very aggressive
logging strategy and every step of execution within the process is monitored.

Each thread has it own log::LogContext, which is holding a set of variables that have to be log in every
case with every message. That way, we do bother only once with the variables to log (when adding them
to the log context) and can focus on the log message.

The variables are stored within the log::LogContex as log::Param, which is roughly speaking a pair of
string for the name of the parameter and its value.

Adding variables is done through LogContext::pushOrReplace, removing them through LogCon-
text::erase and the logging through the log member function. To avoid this cumbersome add/remove, you

1 log::Logger log;
2 log::LogContext lc(log);
3 {
4 lc.pushOrReplace(cta::log::Param("Name var 1",var1));
5 lc.log(LEVEL,message);
6 lc.erase("Name var 1");
7 }

can use LogContext::ScopedParameter, which is a RAII-class for registering a variable into the LogCon-
text and removing it automatically when its goes out of scope. Using LogContext::ScopedParameter is

page 22

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

1 {
2 cta::log::LogContext::ScopedParam sp(lc, cta::log::Param("name var1",var1));
3 cta::log::LogContext::ScopedParam sp2(lc, cta::log::Param("name var2",var2))

;
4 lc.log(LEVEL,message);
5 }

still a bit clunky. To get rid of that, there is the ScopedParamContainer, which acts as RAII container for
parameters.

1 {
2 cta::log::ScopedParamContainer sp(lc);
3 sp.add(var1, "name1").add(var2, "name2");
4 lc.log(LEVEL,message);
5 }

1.6.12 Application architecture

1.6.12.1 Memory management and threading architecture

Like the previous version in rtcpd, the tape server will pre-allocate a fixed number of memory blocks for
the whole duration of the tape session, and circulate them between the data producers and consumers.

The data flow is organised around block passing, from queue to queue. Each queue output is processed by
a thread of thread pool.

The overall layout of a migration mount is shown in figure 1.3. The recall mount, shown in figure 1.4, is
almost symmetric. The report packer triggers on threshold instead of tape flushes, and

1.6.12.2 Session spawner

1.6.12.3 Session process

1.6.12.4 Memory chunk manager

The memory block manager allocates (usually all at once) a large chunk of memory. This memory is then
shared between the various FIFOs in the system. Deallocation of memory on exit will allow memory leak
checks.

1.6.12.4.1 Recall In case of a recall, the memory manager is pretty much an empty shell. Memory
blocks are sequentially pulled by the current tape read task and pushed back to the memory manager once
written to the disk

1.6.12.4.2 Migration In case of a migration, he memory manager has an active role. He has a list of
clients that are waiting for some memory blocks. It pushes to them

1.6.12.5 Tape read thread

Behavior : Beginning :

• Load tape

page 23

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

Free b
lo

cksC
lie

n
t

q
u

eu
e

Migration Mount Manager (main thread)*

Data FIFO

Free blocks

Tape Write Task

Data blocks

Disk Read Task

Get free
blocks

R
ea

d
 d

at
a

fr
o

m
 d

is
k

Push full
data block

Pop block, write
to tape, (flush,)
report result

R
et

u
rn

 f
re

e
b

lo
ck

Task q
u

eu
e

Pop,
execute,
delete

1 thread

Tape Write Single Thread

Ta
sk

 q
u

eu
e

Pop,
execute,
delete

n threads

Disk Read Thread Pool

1 thread

R
eq

u
es

t
fo

r
m

o
re

Task Injector

1 thread

G
et m

o
re w

o
rk

fro
m

 tap
e gatew

ay,
create an

d
 p

u
sh

 tasks

R
eq

u
est m

o
re

o
n

 th
resh

o
ld

In
d

iv
id

u
al

 f
ile

 r
ep

o
rt

s,
 f

lu
sh

re

p
o

rt
s,

 e
n

d
 o

f
se

ss
io

n
 r

ep
o

rt

Report Packer

1 thread

P
ack in

fo
rm

atio
n

an

d
 sen

d
 b

u
lk rep

o
rt

o
n

 flu
sh

/en
d

 sessio
n

1 thread

Instantiate memory manager, injector, packer, disk and tape thread
Give initial kick to task injector
Wait for completion

Global Status Reporter

1 thread

P
ack in

fo
rm

atio
n

 fo
r

tap
eserverd

an
d

 sen
d

Memory manager

(main thread)*

Figure 1.3: Tape server child process: layout of the memory management in the case of a migration mount

• Mount tape
• wait for drive to be ready
• Check the label and position the tape

Run

• Pop a queued task (and ask the task injector to put more tasks in)
• execute

At the end :

• Signal the end to the global status reporter
• Signal to the task injector that he can stop
• attempt of cleaning : unmount and unload the tape

page 24

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

Free b
lo

cks

Recall Mount Manager (main thread)*

Data FIFO

Disk Write Task

Data blocks

Tape Read Task

Pull free
blocks

R
ea

d
 d

at
a

fr
o

m
 t

ap
e

Push full
data block

Pop block, write
to disk,
report result

R
et

u
rn

 f
re

e
b

lo
ck

Task q
u

eu
e

Pop,
execute,
delete

1 thread

Disk Write Thread Pool

Ta
sk

 q
u

eu
e

Pop,
execute,
delete

n threads

Tape Read Single Thread

(no thread)

R
eq

u
es

t
fo

r
m

o
re

Task Injector

1 thread

G
et m

o
re w

o
rk

fro
m

 tap
e gatew

ay,
create an

d
 p

u
sh

 tasks

R
eq

u
est m

o
re

o
n

 th
resh

o
ld

In
d

iv
id

u
al

 f
ile

 r
ep

o
rt

s,
 f

lu
sh

re

p
o

rt
s,

 e
n

d
 o

f
se

ss
io

n
 r

ep
o

rt

Report Packer

1 thread

P
ack in

fo
rm

atio
n

an

d
 sen

d
 b

u
lk rep

o
rt

th
resh

o
ld

/en
d

 sessio
n

1 thread

Instantiate memory manager, injector, packer, disk and tape thread
Give initial kick to task injector
Wait for completion

Global Status Reporter

1 thread

P
ack in

fo
rm

atio
n

Fo

r tap
eserverd

an
d

*(main thread)

Memory manager

Figure 1.4: Tape server child process: layout of the memory management in the case of a recall mount

1.6.12.6 Tape write thread

Behavior : Beginning :

• Load tape
• Mount tape
• wait for drive to be ready
• Check the label and position the tape

Run

• Pop a queued task
• execute
• Report to the client if a threshold has been crossed

At the end :

page 25

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

• Signal the end to the global status reporter
• attempt of cleaning : unmount and unload the tape

1.6.12.7 Disk read thread pool

It is an empty shell owning and running a set of disk read threads. Each thread will pop a task and execute
it. While popping a task, we ask the task injector to provide more task if we cross on the thresholds. The
last thread alive will report the end of the session to the client

1.6.12.8 Disk write thread pool

It is also an empty shell owning and running a set of disk write threads. Each thread will pop a task and
execute it. The last thread alive will report the end of the session to the client

1.6.12.9 Global status reporter

1.6.12.10 Task injector

1.6.12.10.1 Recall

1.6.12.10.2 Migration

1.6.12.11 Loopback system

1.6.13 How to interpret the exit code of the mount-session child process

An exit code of 0 means the underlying drive is free to be used again and the tapeserverd parent-process
should therefore move the state of the drive to UP (idle in tpstat and FREE in showqueues).

A non-zero exit code means the tapeserverd parent-process should move the state of underlying drive to
DOWN. An operator will take a look. Under no circumstances should the tapeserverd daemon launch a
Leon/Victor process to clean the situation.

If the mount-session child-process terminates without an exit code (it received a terminating signal) then
the Leon/Victor process should be launched.

1.7 Compilation instructions

Install SLC 6 (or 5) Install cmake and git if they are not installed out of the box

1 yum -y install python-debian cmake git

1 cd
2 git clone http://git.cern.ch/pub/CASTOR castor
3 mkdir build && cd build
4 cmake -DPackageOnly:bool=true ../castor/
5 make castor_rpm

The last command will give you a list of missing packages that are needed. Most of them can be installed
with a simple yum install when epel repository is enabled.

page 26

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

1 yum install -y libattr-devel binutils-devel python-devel xfsprogs-devel gtest
gtest-devel globus-gridftp-server-devel globus-common-devel cppunit-devel
e2fsprogs-devel openssl-devel krb5-devel curl-devel zeromq3 zeromq3-devel
protobuf-compiler protobuf protobuf-devel valgrind

But you need get and install manualy from swrep25 at least the following packages :

• gmock-1.5.0-3
• gmock-devel-1.5.0-3
• libmemcached-0.53-1
• libmemcached-devel-0.53-1
• oracle-instantclient-basic-11.2.0.3.0-5
• oracle-instantclient-precomp-11.2.0.3.0-5
• oracle-instantclient-devel-11.2.0.3.0-5
• stk-ssi-devel-2.3-3.cern
• stk-ssi-2.3-3.cern

Ceph is also need. The following command should take care of that :

1 yum localinstall http://swrep/swrep/x86_64_slc6/ceph-0.80.1-0.cern.x86_64.rpm
http://swrep/swrep/x86_64_slc6/ceph-devel-0.80.1-0.cern.x86_64.rpm http://
swrep/swrep/x86_64_slc6/librados2-0.80.1-0.cern.x86_64.rpm http://swrep/
swrep/x86_64_slc6/python-ceph-0.80.1-0.cern.x86_64.rpm http://swrep/swrep/
x86_64_slc6/libradosstriper-0.80.1-0.cern.x86_64.rpm http://swrep/swrep/
x86_64_slc6/libcephfs_jni1-0.80.1-0.cern.x86_64.rpm http://swrep/swrep/
x86_64_slc6/libcephfs1-0.80.1-0.cern.x86_64.rpm http://swrep/swrep/
x86_64_slc6/librbd1-0.80.1-0.cern.x86_64.rpm

You may install ceph-debuginfo (2.8 Go) if you need to.

xrootd4 packages for SLC6 could be installed by :

1 yum localinstall http://swrep/swrep/x86_64_slc6/xrootd4-devel-4.0.0-1.slc6.
x86_64.rpm http://swrep/swrep/x86_64_slc6/xrootd4-libs-4.0.0-1.slc6.
x86_64.rpm http://swrep/swrep/x86_64_slc6/xrootd4-private-devel-4.0.0-1.
slc6.noarch.rpm http://swrep/swrep/x86_64_slc6/xrootd4-client-libs
-4.0.0-1.slc6.x86_64.rpm http://swrep/swrep/x86_64_slc6/xrootd4-server-
libs-4.0.0-1.slc6.x86_64.rpm http://swrep/swrep/x86_64_slc6/xrootd4-client
-4.0.0-1.slc6.x86_64.rpm http://swrep/swrep/x86_64_slc6/xrootd4-client-
devel-4.0.0-1.slc6.x86_64.rpm http://swrep/swrep/x86_64_slc6/xrootd4-
server-devel-4.0.0-1.slc6.x86_64.rpm

After that, you can run again

You should have no errors (if some packages are still missing, install it) otherwise it should compile castor
and create the rpm package.

A classic compilation is done with the usal make. To run a set of tests make test has to be used.

1.7.0.1 Compiling on SLC6

On SLC6, there is clash between oracle-* and postgresql-devel packages about sqlca.h. The package
postgresql-devel provides a new file sqlca.h, which has several significant differences with the one provided
by the oracle-* packages, thus leading the compilation to fail.

25http://swrep/swrep/

page 27

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Developer’s manual

1 make castor_rpm

1.7.0.2 Compiling on SLC5

On SLC5, an empty line is requiered at the end of each file.

page 28

Reference: http://www.cern.ch/castor
Revision: 0
Last modified: June 20, 2017

Title:
CAStor Tape Server Documentation
Issue: 1
Administrator’s manual

Chapter 2

Administrator’s manual

2.1 User and capabilities

Castor used to run as root, which is not the best safety policy. New version should be run by stage:st
(even if still own by root), because the first action will be to drop the root’s privlegeves to move to stage:st
But accessing /dev/nst* for writing data requires to either be root (on SLC5) or to have the the capabilitie
CAP SYS RAWIO set on. Here the incriminated piece of code into the st driver :

1 switch (cmd_in) {
2 case SCSI_IOCTL_GET_IDLUN:
3 case SCSI_IOCTL_GET_BUS_NUMBER:
4 break;
5 default:
6 if ((cmd_in == SG_IO ||
7 cmd_in == SCSI_IOCTL_SEND_COMMAND ||
8 cmd_in == CDROM_SEND_PACKET) &&
9 !capable(CAP_SYS_RAWIO))

10 i = -EPERM;
11 else
12 i = scsi_cmd_ioctl(STp->disk->queue, STp->disk,
13 file->f_mode, cmd_in, p);
14 if (i != -ENOTTY)
15 return i;
16 break;
17 }

The cleanest way to do it seems to allowed the one we need on the main-binary and the acquired them in
the forked process

2.2 Pending questions

• Is the option ST_BUFFER_WRITES from castor.conf still used?

• Why does/etc/castor/TPCONFIG have a tape density column? In order to ject incompatibel
tapes from being mounted.

page 29

	Preface
	Developer's manual
	Requirements
	Targeted environment
	Pre-existing requirements
	Extra requirements

	Tape server architecture
	Reference documentations
	SCSI specifications
	SCSI support in Linux
	Unsorted CAStor docs
	SCSI tape support in Linux (st driver)

	Tools used during development
	Required tools for build
	Tools used during development
	Code coverage using lcov

	Data transfer session step by step
	Software layout
	SCSI structures, constants and endianness
	Exceptions hierarchy and error handling strategy
	Non-fatal warnings strategy
	The Tape::Drive object
	The Tape::File class
	FIFOs
	Disk client library
	VDQM client library
	VMGR client library
	Stager/TapeGateway client library
	Logging system client library
	Application architecture
	How to interpret the exit code of the mount-session child process

	Compilation instructions

	Administrator's manual
	User and capabilities
	Pending questions

