
The CERN Tape Archive

Germán Cancio Eric Cano Michael Davis Daniele Kruse Steven Murray

September 5, 2017

Contents

Contents 1

1 Introduction 2

2 CTA Basic Concepts 3
2.1 Archiving a file with CTA . 3
2.2 Retrieving a file with CTA . 4

3 Tape Sessions and Sub-processes 5
3.1 Introduction . 5
3.2 Drive sub-process . 6

4 Object Store 7
4.1 Introduction . 7
4.2 Classes and memory side representation . 7
4.3 Data model and Object Store side representation . 8

4.3.1 RootEntry . 8
4.3.2 Queues and request objects . 9
4.3.3 Archive and retrieve queues . 9
4.3.4 Drive register, scheduling global lock and agent register 10

4.4 Multi object operations and multi-agent safety . 10
4.4.1 Agent failure management and garbage collection 10
4.4.2 Special case of archive and retrieve requests ownership 11
4.4.3 Object versioning an schema evolution . 11

4.5 Performance considerations . 11

5 CTA Authorization 12
5.1 . 12
5.2 Kerberos . 12

6 Questions and Issues 13

A CTA-EOS Command Line Interface 14
A.1 ARCHIVING from EOS to CTA . 14
A.2 RETRIEVING from CTA to EOS . 15
A.3 DELETING an ARCHIVE FILE . 16
A.4 CANCELING a SCHEDULED RETRIEVAL . 17
A.5 UPDATE the STORAGE CLASS of a FILE . 17
A.6 UPDATE INFO of a FILE . 18
A.7 LISTING all STORAGE CLASSES available . 19

1

Chapter 1

Introduction

The main objective of the CERN Tape Archive (CTA) project is to develop a prototype tape archive
system that transfers files directly between remote disk storage systems and tape drives. The concrete
remote storage system of choice is EOS.

The Data and Storage Services (DSS) currently provides a tape archive service. This service is imple-
mented by the Hierarchical StorageManagement (HSM) system named the CERNAdvanced STORage
Manager (CASTOR). This HSM has an internal disk-based storage area that acts as a staging area for
tape drives. Until now this staging area has been a vital component of CASTOR. It has provided the
necessary buffer between the multi-stream, block-oriented disk drives of end users and the single-
stream, file-oriented tape drives of the central tape system. Assuming the absence of a sophisticated
disk to tape scheduling system, at any single point in time a disk drive will be required to service
multiple data streams whereas a tape drive will only ever have to handle a single stream. This means
that a tape stream will be at least one order of magnitude faster than a disk stream. With the advent
of disk storage solutions that stripe single files over multiple disk servers, the need for a tape archive
system to have an internal disk-based staging area has become redundant. Having a file striped over
multiple disk servers means that all of these disk-servers can be used in parallel to transfer that file
to a tape drive, hence using multiple disk-drive streams to service a single tape stream.

The CTA project is a prototype for a very good reason. The DSS group needs to investigate and learn
what it means to provide a tape archive service that does not have its own internal disk-based staging
area. The project also needs to keep its options open in order to give the DSS group the best oppor-
tunities to identify the best ways forward for reducing application complexity, easing code mainte-
nance, reducing operation overheads and improving tape efficiency.

The CTA project currently has no constraints that go against collecting a global view of all tape,
drive and user request states. This means the CTA project should be able to implement intuitive and
effective tape scheduling policies. For example it should be possible to schedule a tape archivemount
at the point in time when there is both a free drive and a free tape. The architecture of the CASTOR
system does not facilitate such simple solutions due to its history of having separate staging areas
per experiment and dividing the mount scheduling problem between these separate staging areas
and the central tape system responsible for issuing tape mount requests for all experiments.

2

Chapter 2

CTA Basic Concepts

CTA is operated by authorized administrators (AdminUsers) who issue CTA commands from autho-
rized machines (AdminHosts), using the CTA command line interface. All administrative metadata
(such as tape, tape pools, storage classes, etc.) is taggedwith acreationLog and alastModificationLog
which saywho/when/where created themand lastmodified them. Anadministratormay create (add),
delete (rm), change (ch) or list (ls) any of the administrative metadata.

Tape Pools are logical groupings of tapes that are used by operators to separate data belonging to
different Virtual Organisations (VOs). They are also used to categorize types of data and to separate
multiple copies of files so that they end up in different buildings. Each tape belongs to one and only
one tape pool.

Logical Libraries are the concept that is used to link tapes and drives together. We use logical libraries
to specify which tapes are mountable into which drives, and normally this mountability criteria is
based on location, that is the tape has to be in the same physical library as the drive, and on read/
write compatibility. Each tape and each drive has one and only one logical library.

A Storage Class is assigned to each archive file to specify how many tape copies the file is expected
to have.

Archive Routes link storage classes to tape pools. An archive route specifies onto which set of tapes
the copies will be written. There is an archive route for each copy in each storage class, and normally
there should be a single archive route per tape pool.

So to summarize, an archive file has a storage class that determines how many copies on tape that
file should have. A storage class has an archive route per tape copy to specify into which tape pool
each copy goes. Each tape tool is made of a disjoint set of tapes. And tapes can be mounted on drives
that are in their same logical library.

2.1 Archiving a file with CTA

CTA has a CLI for archiving and retrieving files to/from tape, that is meant to be used by an external
disk-based storage systemwith an archivingworkflow engine such as EOS. A non-administrative User
in CTA is an EOS user which triggers the need for archiving or retrieving a file to/from tape. A User
normally belongs to a specific CTA Mount Group which specifies the Mount Policy.

Here we offer a simplified description of the archive process:

1. EOS issues an archive command for a specific file, providing its source path, its Storage Class
and the User requesting the archival.

3

2. CTA returns immediately an ArchiveFileID which is used by CTA to uniquely identify files
archived on tape. This ID will be kept by EOS for any operations on this file (such as retrieval).

3. Asynchronosly, CTA carries out the archival of the file to tape, in the following steps:

(a) CTA looks up the Storage Class provided by EOS and makes sure it has correct Archive
Routes to one or more Tape Pools (more than one when multiple copies are required by
the Storage Class).

(b) CTA queues the corresponding archive job(s) to the proper Tape Pool(s).

(c) in the meantime each free tape drive queries the central “scheduler” for work to be done,
by communicating its name and its Logical Library.

(d) for each work request, CTA checks whether there is a free tape in the required Tape Pool
(as specified in 3b), that belongs to the desired Logical Library (specified in 3c).

(e) if that is the case, CTA checks whether the work queued for that Tape Pool is worth a
mount, i.e. if it meets the archive criteria specified in the Mount Group to which the User
(specified in 1) belongs.

(f) if that is the case, the tape is mounted in the drive and the file gets written from the source
path (specified in 1) to the tape.

(g) after a successful archival, CTA notifies EOS through an asynchronous callback.

An archival process can be canceled at any moment (even after correct archival, but in this case it’s a
delete) through the delete archive command.

2.2 Retrieving a file with CTA

Here we offer a simplified description of the retrieve process:

1. EOS issues a retrieve command for a specific file, providing its ArchiveFileID, desired des-
tination path and the User requesting the retrieval.

2. CTA returns immediately.

3. Asynchronosly, CTA carries out the retrieval of the file from tape, in the following steps:

(a) CTA queues the corresponding retrieve job(s) to the proper tape(s) (depending on where
the tape copies are located).

(b) in the meantime each free tape drive queries the central “scheduler” for work to be done,
by communicating its name and its Logical Library.

(c) for each work request CTA checks whether the Logical Library (specified in 3b) is the same
of (one of) the tape(s) (specified in 3a).

(d) if that is the case, CTA checks whether the work queued for that tape is worth the mount,
i.e. if itmeets the retrieve criteria specified in theMountGroup towhich theUser (specified
in 1) belongs

(e) if that is the case, the tape is mounted in the drive and the file gets read from tape to the
destination (specified in 1).

(f) after a successful retrieval CTA notifies EOS through an asynchronous callback.

A retrieval process can be canceled at any moment prior to correct retrieval through the “cancel
retrieve” command.

4

Chapter 3

Tape Sessions and Sub-processes

3.1 Introduction

The program cta-taped is a daemon managing the tape drive and transferring data from tape to
drive. The daemon has two levels of processes:

The Daemon Process: a single threaded sub-process manager which does not have any external
connectivity. TheDaemonProcess is very simple andhas a long lifetime (in the order ofmonths).

Sub-processes: implement external connectivity. Sub-processes can be multi-threaded. They have
a short lifetime with regular restarts, to limit the consequences of memory leaks or other po-
tential bugs in third-party tape libraries.

There are several types of Sub-process. The main Sub-process is the drive sub-process (see below).

Other possible sub-processes:
• Labelling process?
• Drive cleaning process?
• Verification process? Perhaps not necessary as a read-only Drive process could do the
job?

Are these part of the Drive sub-process or are they separate processes launched by the Drive
sub-process?

5

3.2 Drive sub-process

One Drive sub-process is launched per drive in the tape server. The Drive sub-process executes one
mount and then exits.

The daemon then restarts a new Drive sub-process instance, passing in the previous instances’ exit
status. Based on this status from the previous run, the session could become either:

A Cleanup Session: any potentially still-mounted tape is removed from the drive, or

A Scheduling Session: Scheduling can lead to Archive, Retrieve or Labelling sessions.

The tape session types and state changes are shown in Figure 3.1.

Session type:
Undefined

Starting up

Scheduling

Checking

Session type:
Cleanup

Unmounting

Mounting Running Unmounting

Draining to
disk

Shutting
down

Session type:
Archive, retrieve or label

Shutting
down

Figure 3.1: Tape sessions state diagram

6

Chapter 4

Object Store

4.1 Introduction

The queuing system of CTA is implemented over an Object Store. This is preferred over databases
that do not provide a good modeling of multiple independent queues and objects. Databases also
struggle to shrink tables that once contained lots of entries, which is the fate of a queue. Classi-
cal databases are also a single point of failure and contention, and regularly require downtime for
software maintenance.

The targeted implementation is Ceph, which scales horizontally and provides parallel access to ob-
jects. A Ceph cluster also provides excellent resilience against component failures.

The CTA Scheduler object relies on a SchedulerDatabase object to store the queuing related informa-
tion.

The techniques employed in the Object Store have several aspects:

1. The in-memory representation of individual objects and the functions used to serialize and
de-serialize data between memory and Object Store.

2. The connection of the objects together to constitute a multi-object structure. As the Object
Store only provides per-object transactions, safe multi-object operations require usage of a few
conventions.

3. Finally, a garbage collector allows resetting objects left behind by crashed processes, by re-
queuing requests and deleting uncommitted objects.

4.2 Classes and memory side representation

The processes of CTA (namely user front end and tape drive) rely on a shared Scheduler object to
queue, dequeue and report about data transfer requests. The Scheduler itself relies on an Object
Store-based SchedulerDatabase for queuing, and a file Catalogue to keep persistent information
about stored files.

The OStoreDB implementation of the SchedulerDatabase interface relies on a collection of classes in
the cta::objectstore namespace. Those classes are responsible for providing the high level function-
ality specific to each object type, on top of the common methods provided by all objects (lock, fetch,
commit, etc.). The common part is inherited from the template ObjectOps. The parameter to this
template is the Google protocol buffer type used to serialize the content of the object to persistent

7

storage. The commonalities of all the template instances are inherited from a base class ObjectOps-
Base. This base class in used for special operations that can apply to any object type, namely garbage
collection. The memory side class hierarchy is shown in figure 4.1.

�use��use�

�use�

Scheduler

Catalogue�interface�
SchedulerDatabase

OStoreDB

RootEntry ArchiveToFileRequest etc...

ObjectOps<serilalizers::RootEntry> ObjectOps<serilalizers::ArchiveToFileRequest>

ObjectOpsBase

�interface�
Backend

BackendRados BackendVFS

Figure 4.1: Object store’s classes

4.3 Data model and Object Store side representation

To achieve even performance with various amounts of requests queued, the implementation will
store the requests into queues, one per Tape Pool for archival and one per tape for retrieves. The
targeted queuing and dequeuing complexity is O(1), but higher order complexity is necessary for
retrieve queues, where requests are stored in tape location order and not arrival order.

The Object Store contains one queue per tape pool for archival, one queue per tape for retrieval. The
status of the drives is also stored, with which tape they are working on. A singleton object is used
as a lock, as the mount scheduling is executed one drive at a time. The combination of how much
is queued for each tape and tape pool, plus what is currently being done by other drives is used to
determine the next mount for the drive being scheduled.

Finally each actor on the Object Store is represented as a Agent object, which keeps references to
objects created and worked on by the actor, preventing object leak. The data model of the Object
Store is shown in figure 4.2.

4.3.1 RootEntry

The RootEntry is an object with a conventional name in the Object Store. It is the entry point to the
object tree, and is the only object which does not require a lookup. It contains references to each

8

RootEntry

Tape-BTape-A

RetrieveRequestA1

RetrieveRequestA2

RetrieveRequestB1

RetrieveRequestB2

TapePool-C TapePool-D

ArchiveRequestCD1

ArchiveRequestC2 ArchiveRequestD2

DriveRegisterSchedulingGlobalLock AgentRegister

Agent1 Agent2

ArchiveRequestC3

Figure 4.2: Object store’s instance diagram

queue, the drive register, the agent register and the scheduling lock. It only needs to be modified
when a new queue (archive or retrieve) is created or removed.

4.3.2 Queues and request objects

Requests represent a full file request. An archive request is hence composed of one or several transfers
— one for each copy, and all of them should be executed. A retrieve request is also composed of one
or several transfers, but only one of them needs to be executed in order for the file to be retrieved.

The archive request

The archive requests is a set of one or several transfer jobs (one per copy on tape) for a given tape file.
All should be executed. The archive requests has a life cycle deriving from the ones of the individual
jobs. Typically, when marking the last job as finished, the request becomes complete as well. In
order to simplify this updating, all the related jobs are physically stored in a single object, the archive
request. The archive queues hence point not only to the archive request object, but also to the job
number within the request. Impact on the multi object operations is described in section 4.4.2. For
multi-copies objects, this means that a given archive request object will be queued on several tape
pools simultaneously, while in practice each job will be attached to a different queue.

The retrieve request

The retrieve requests is a set of one or several transfer jobs (one per copy on tape) for a given tape
file. Only one of them needs to be executed. The requests will hence be queued to only one tape at
a time. At queuing time, we decide which tape is the most promising (with the most work already
queued) and add the request to this one,minimizing the number ofmount and increasing the chances
of reaching the mount policy thresholds. As only one job is active at any point in time, the retrieve
request has a single owner like the rest of object, the archive request being the only exception.

9

4.3.3 Archive and retrieve queues

One archive queue is created per tape pool, one retrieve queue per tape with existing requests. They
contain references to archive jobs, pre-ordered by age time. This allowsO(1) de-queuing in all cases,
O(1) insertion for archivals, and O(log (n)) insertion for retrievals (they have to be sorted in tape
position order). Re-queing (insertion) failed requests for retries will require O(1) or O(log (n)) de-
pending on the policy and the direction. The initially intended policy is to re-queue archive requests
at the end of the queue to guarantee global system performance.

4.3.4 Drive register, scheduling global lock and agent register

The drive registerwill allow operators and other drives (when scheduling) to get a picture of thewhole
system. Each drive schedules itself when idle, and needs to know how much is currently queued,
with which age and which priority and what other drives are working on to reach a decisionmatching
mount criteria. This includes which tape is beingworked on by the drives, and the states of the drives.
This information is one way, from drive to reader, except for the operator changing the state of drive
(DOWN to UP, and vice-versa, when applicable). The state of the drive is time tagged to detect stale
drive information for non-running servers.

The scheduling global lock is a object used for locking the system globally while a drive is deciding
its next mount. This is discussed further in section 4.5.

The agent register is a list of all the agents operating on the Object Store. The list points to individual
agent objects, one per actual process running in the system. This is further discussed in 4.4.1.

4.4 Multi object operations and multi-agent safety

The Object Store provided per-object locking. The ObjectOps base template will validate that proper
locking has been taken on a given object before accessing it. The usual sequences are { initialise (in
memory), modify inmemory, insert new object in the store}, { lock, fetch, modify inmemory, commit
} and { lock, fetch, remove }.

When a multi-object structure is involved, the process accessing the store should manage to create
the object and reference it away that is semantically atomic for the other processes. Thismulti-object
access is implemented in the OStoreDB object.

To achieve semantic atomicity on multi-object operations, two conventions are used.

The first convention is that references to object can be stale. This allows several references to exist
at any point in time, pointing to the same object, with only one being effective (or zero before object
creation). References can also point to non-existing objects. The function handling the reference
should manage those cases.

The second convention is that objects point to their actual reference, allowing to resolve if a reference
being used if active or stale.

During object creation or processing (likewhen a job is selected by the tape server for being executed),
the object is referenced by the agent structure representing the current process.

4.4.1 Agent failure management and garbage collection

The conventions previously describe ensure that objects are always uniquely referenced inside the
object tree, either by a queue or by an agent. Several instances of a dedicated process, the garbage

10

collector, monitor those agent entries. The agent entry contains a heartbeat counter, which allows
the garbage collector to determine that the process is not active anymore, and triggers the resetting
of the owned objects. Garbage collector processes themselves are also represented as agents, own
other agents (they cannot watch themselves) so that the crash of a garbage collector is also covered
(the watched agents will be picked up by another garbage collector instance, on another system, or
at another time as the garbage collector will be restarted automatically).

The resetting of the objects is type dependent. Each in memory object type implements a garbage
collect method, which is called by the garbage collector when collecting a dead process. The Object
Store representation of objects has a commonheader indicating the type, schemaversionnumber and
owner (which is a shared notion). This allow the garbage collector to determine the type dynamically
and to call the appropriate garbage collection function. Likewise, the owner in the header allows
determining whether the object is actually owner by the agent being garbage collected (in which case
the object should be reset), or not (in which case the reference was actually stale).

4.4.2 Special case of archive and retrieve requests ownership

As mentioned in section 4.3.2, the archive request is a special case, and has several owners, one per
tape copy job. This means that determining ownership will require actually parsing object content
itself instead of just the header. Besides this detail, the re-queuing of the job is identical to the other
cases.

4.4.3 Object versioning an schema evolution

The object version, not currently used is intended for live schema evolution. In order to achieve
migration from version A to B of the schema, we need to implement a transtional version of the
objects which can read and write version A and B. After global deployment of this version, a central
trigger (configuration file, etc.) changes the write version of the instances fromA to B, and all objects
previouslywrittenwith schemaAwill bewritten backwith schemaB on the next update. Thismethod
allows a zero downtime schema transition, with the drawback that an active traversal of the structure
is necessary to ensure complete transition. The schema is not yet implemented.

4.5 Performance considerations

Performance numbers have been extracted from the CASTOR runs of 2015. The per tape pool rate has
been measured over 10 minutes intervals. The maximum seen was 78 Hz. The initial performance
target will hence be 100 Hz per queue and a total 1 kHz system wide. The maximum size for a queue
will be 107, and the system will instruct the user to back-off before crossing this boundary. This limit
represents more than a day’s worth at the maximum rate. The number of queues existing at a single
point in time is estimated to be around 103 (as several hundreds can be typically seen in CASTOR).

Using an Object Store allows independent access to each object, so little contention is expected,
besides when accessing queues. As there are one queue per tape pool, cross talk between users of
different tape pools should beminimal. Themain challenge will hence be to ensure efficient queuing
in a given queue whenmany files get added/dequeued in parallel. As the round trip time to the Object
Store will not be compressible, we will have to add many elements to the queue in one go. On the
tape server side, this could be implemented with bulk access to the queue, followed by many threads
updating the jobs in parallel, and then updating all the entries in one go in the queue. This would
allow accessing an arbitrary amount of jobs over a fixed number of round trip times.

On the front end side, the fact that each xrootd connection lives in a separate thread can be leveraged,
by naturally creating the jobs in each thread, and then relying on shared data structures to accumulate

11

elements to queue in one go. This will allow to increase throughput at the expense of an increased
(but bound) latency to the end user.

12

Chapter 5

CTA Authorization

5.1 Simple Shared Secrets (SSSs)

SSSs are used to authenticate communications using the XRoot protocol, which is the case in the
following situations:

1. Internal communication between the EOS mgm and fst daemons.

2. Communication between the Tape Server and the EOS mgm daemon. (On the other hand, com-
munication between the Tape Server and the EOS fst daemon does not use SSS; this is handled
by internal redirection within the XRoot library layer.)

3. Communication between the EOS mgm daemon and the CTA Front End daemon.

5.2 Kerberos

Kerberos authentication is used in the following situations:

1. Communication between the CTA Admin tool and the CTA Front End daemon. In this case,
Kerberos is the only available authentication mechanism.

2. Communication between EOS users (Atlas, CMS, etc.) and the EOS mgm daemon. In this case,
Kerberos is one of several options. Authentication can be performed by any mechanism which
is supported by both XRoot and EOS, for example SSS or standard UNIX authentication.

13

Chapter 6

Questions and Issues

This chapter is to note issues that are not yet addressed in the documentation but should be.

Rate Limiting: The maximum rate at which EOS can receive files is an order of magnitude
higher than the rate at which CTA can write files to tape. This could be a problem, particularly
if some user decides to write many small files. How will this be addressed in the design of CTA?

14

Appendix A

CTA-EOS Command Line Interface

EOS communicates with CTA by issuing commands on trusted hosts. EOS can archive a file, retrieve
it, update its information/storage class, delete it or simply list the available storage classes. See the
LimitingInstanceCrosstalk.txt file for more details on how these commands are authorized by CTA.

A.1 ARCHIVING from EOS to CTA

1) EOS REQUEST: cta a/archive

--encoded <"true" or "false"> // true if all following arguments are base64 encoded,
// false if all following arguments are in clear
// (no mixing of encoded and clear arguments)

--user <user> // string name of the requester of the action (archival),
// used for SLAs and logging,
// not kept by CTA after successful operation

--group <group> // string group of the requester of the action (archival),
// used for SLAs and logging,
// not kept by CTA after successful operation

--diskid <disk_id> // string disk id of the file to be archived,
// kept by CTA for reconciliation purposes

--instance <instance> // string kept by CTA for authorizing the request
// and for disaster recovery

--srcurl <src_URL> // string source URL of the file to archive of
// the form scheme://host:port/opaque_part,
// not kept by CTA after successful archival

--size <size> // uint64_t size in bytes kept by CTA for
// correct archival and disaster recovery

--checksumtype <checksum_type> // string checksum type (ex. ADLER32) kept by CTA
// for correct archival and disaster recovery

--checksumvalue <checksum_value> // string checksum value kept by CTA for correct

15

// archival and disaster recovery

--storageclass <storage_class> // string that determines how many copies and
// which tape pools will be used for archival
// kept by CTA for routing and authorization

--diskfilepath <disk_filepath> // string the disk logical path kept by CTA
// for disaster recovery and for logging

--diskfileowner <disk_fileowner> // string owner username kept by CTA
// for disaster recovery and for logging

--diskfilegroup <disk_filegroup> // string owner group kept by CTA
// for disaster recovery and for logging

--recoveryblob <recovery_blob> // 2KB string kept by CTA for disaster recovery
// (opaque string controlled by EOS)

--diskpool <diskpool_name> // string used (and possibly kept)
// by CTA for proper drive allocation

--throughput <diskpool_throughput> // uint64_t (in bytes) used (and possibly kept)
// by CTA for proper drive allocation

2) CTA IMMEDIATE REPLY: CTA_ArchiveFileID or Error

CTA_ArchiveFileID: string which is the unique ID of the CTA file to be kept by EOS
while file exists (for future retrievals). In case of retries,
a new ID will be given by CTA (as if it was a new file),
the old one can be discarded by EOS.

3) CTA CALLBACK WHEN ARCHIVED SUCCESSFULLY: src_URL and copy_number with or without Error

src_URL: this is the same string provided in the EOS archival request
copy_number: indicates which copy number was archived

note: if multiple copies are archived there will be one callback per copy

A.2 RETRIEVING from CTA to EOS

1) EOS REQUEST: cta r/retrieve

--encoded <"true" or "false"> // true if all following arguments are base64 encoded,
// false if all following arguments are in clear
// (no mixing of encoded and clear arguments)

--user <user> // string name of the requester of the action (retrieval),
// used for SLAs and logging,
// not kept by CTA after successful operation

--group <group> // string group of the requester of the action (retrieval),
// used for SLAs and logging,
// not kept by CTA after successful operation

16

--id <CTA_ArchiveFileID> // uint64_t which is the unique ID of the CTA file

--dsturl <dst_URL> // string of the form scheme://host:port/opaque_part,
// not kept by CTA after successful operation

--diskfilepath <disk_filepath> // string the disk logical path kept by CTA
// for disaster recovery and for logging

--diskfileowner <disk_fileowner> // string owner username kept by CTA for
// disaster recovery and for logging

--diskfilegroup <disk_filegroup> // string owner group kept by CTA for disaster
// recovery and for logging

--recoveryblob <recovery_blob> // 2KB string kept by CTA for disaster recovery
// (opaque string controlled by EOS)

--diskpool <diskpool_name> // string used (and possibly kept) by CTA for
// proper drive allocation

--throughput <diskpool_throughput> // uint64_t (in bytes) used (and possibly kept)
// by CTA for proper drive allocation

Note: disk info is piggybacked

2) CTA IMMEDIATE REPLY: Empty or Error

3) CTA CALLBACK WHEN RETRIEVED SUCCESSFULLY: dst_URL with or without Error

dst_URL: this is the same string provided in the EOS retrieval request

A.3 DELETING an ARCHIVE FILE

1) EOS REQUEST: cta da/deletearchive

--encoded <"true" or "false"> // true if all following arguments are base64 encoded,
// false if all following arguments are in clear
// (no mixing of encoded and clear arguments)

--user <user> // string name of the requester of the action (deletion),
// used for SLAs and logging,
// not kept by CTA after successful operation

--group <group> // string group of the requester of the action (deletion),
// used for SLAs and logging,
// not kept by CTA after successful operation

--id <CTA_ArchiveFileID> // uint64_t which is the unique ID of the CTA file

Note: This command may be issued even before the actual archival process has begun

17

2) CTA IMMEDIATE REPLY: Empty or Error

A.4 CANCELING a SCHEDULED RETRIEVAL

1) EOS REQUEST: cta cr/cancelretrieve

--encoded <"true" or "false"> // true if all following arguments are base64 encoded,
// false if all following arguments are in clear
// (no mixing of encoded and clear arguments)

--user <user> // string name of the requester of the action (cancel),
// used for SLAs and logging,
// not kept by CTA after successful operation

--group <group> // string group of the requester of the action (cancel),
// used for SLAs and logging,
// not kept by CTA after successful operation

--id <CTA_ArchiveFileID> // uint64_t which is the unique ID of the CTA file

--dsturl <dst_URL> // this is the same string provided in the EOS
// retrieval request

--diskfilepath <disk_filepath> // string the disk logical path kept by CTA for
// disaster recovery and for logging

--diskfileowner <disk_fileowner> // string owner username kept by CTA for disaster
// recovery and for logging

--diskfilegroup <disk_filegroup> // string owner group kept by CTA for disaster
// recovery and for logging

--recoveryblob <recovery_blob> // 2KB string kept by CTA for disaster recovery
// (opaque string controlled by EOS)

Note: This command will succeed ONLY before the actual retrieval process has begun
Note: disk info is piggybacked

2) CTA IMMEDIATE REPLY: Empty or Error

A.5 UPDATE the STORAGE CLASS of a FILE

1) EOS REQUEST: cta ufsc/updatefilestorageclass

--encoded <"true" or "false"> // true if all following arguments are base64 encoded,
// false if all following arguments are in clear
// (no mixing of encoded and clear arguments)

--user <user> // string name of the requester of the action (update),
// used for SLAs and logging,

18

// not kept by CTA after successful operation

--group <group> // string group of the requester of the action (update),
// used for SLAs and logging,
// not kept by CTA after successful operation

--id <CTA_ArchiveFileID> // uint64_t which is the unique ID of the CTA file

--storageclass <storage_class> // updated storage class which may or may not have
// a different routing

--diskfilepath <disk_filepath> // string the disk logical path kept by CTA for
// disaster recovery and for logging

--diskfileowner <disk_fileowner> // string owner username kept by CTA for disaster
// recovery and for logging

--diskfilegroup <disk_filegroup> // string owner group kept by CTA for disaster
// recovery and for logging

--recoveryblob <recovery_blob> // 2KB string kept by CTA for disaster recovery
// (opaque string controlled by EOS)

Note: This command DOES NOT change the number of tape copies! The number will change
asynchronously (next repack or "reconciliation").

Note: disk info is piggybacked

2) CTA IMMEDIATE REPLY: Empty or Error

A.6 UPDATE INFO of a FILE

1) EOS REQUEST: cta ufi/updatefileinfo

--encoded <"true" or "false"> // true if all following arguments are base64 encoded,
// false if all following arguments are in clear
// (no mixing of encoded and clear arguments)

--id <CTA_ArchiveFileID> // uint64_t which is the unique ID of the CTA file

--diskfilepath <disk_filepath> // string the disk logical path kept by CTA for
// disaster recovery and for logging

--diskfileowner <disk_fileowner> // string owner username kept by CTA for disaster
// recovery and for logging

--diskfilegroup <disk_filegroup> // string owner group kept by CTA for disaster
// recovery and for logging

--recoveryblob <recovery_blob> // 2KB string kept by CTA for disaster recovery
// (opaque string controlled by EOS)

Note: This command is not executed on behalf of an EOS user. Instead it is part of a

19

resynchronization process initiated by EOS.

2) CTA IMMEDIATE REPLY: Empty or Error

A.7 LISTING all STORAGE CLASSES available

1) EOS REQUEST: cta lsc/liststorageclass

--encoded <"true" or "false"> // true if all following arguments are base64 encoded,
// false if all following arguments are in clear
// (no mixing of encoded and clear arguments)

--user <user> // string name of the requester of the action (listing),
// used for SLAs and logging,
// not kept by CTA after successful operation

--group <group> // string group of the requester of the action (listing),
// used for SLAs and logging,
// not kept by CTA after successful operation

2) CTA IMMEDIATE REPLY: storage class list

20

	Contents
	Introduction
	CTA Basic Concepts
	Archiving a file with CTA
	Retrieving a file with CTA

	Tape Sessions and Sub-processes
	Introduction
	Drive sub-process

	Object Store
	Introduction
	Classes and memory side representation
	Data model and Object Store side representation
	RootEntry
	Queues and request objects
	Archive and retrieve queues
	Drive register, scheduling global lock and agent register

	Multi object operations and multi-agent safety
	Agent failure management and garbage collection
	Special case of archive and retrieve requests ownership
	Object versioning an schema evolution

	Performance considerations

	CTA Authorization
	sss
	Kerberos

	Questions and Issues
	CTA-EOS Command Line Interface
	ARCHIVING from EOS to CTA
	RETRIEVING from CTA to EOS
	DELETING an ARCHIVE FILE
	CANCELING a SCHEDULED RETRIEVAL
	UPDATE the STORAGE CLASS of a FILE
	UPDATE INFO of a FILE
	LISTING all STORAGE CLASSES available

