// SPDX-FileCopyrightText: Deutsches Elektronen-Synchrotron DESY, MSK, ChimeraTK Project <chimeratk-support@desy.de> // SPDX-License-Identifier: LGPL-3.0-or-later #include "Application.h" #include "ApplicationModule.h" #include "ArrayAccessor.h" #include "ScalarAccessor.h" #include <ChimeraTK/BackendFactory.h> #include <boost/mpl/list.hpp> #include <future> #define BOOST_NO_EXCEPTIONS #define BOOST_TEST_MODULE testAppModuleConnections #include <boost/test/included/unit_test.hpp> #undef BOOST_NO_EXCEPTIONS using namespace boost::unit_test_framework; namespace ctk = ChimeraTK; // list of user types the accessors are tested with typedef boost::mpl::list<int8_t, uint8_t, int16_t, uint16_t, int32_t, uint32_t, float, double> test_types; /*********************************************************************************************************************/ /* the ApplicationModule for the test is a template of the user type */ template<typename T> struct TestModule : public ctk::ApplicationModule { TestModule(ctk::ModuleGroup* owner, const std::string& name, const std::string& description, ctk::HierarchyModifier hierarchyModifier = ctk::HierarchyModifier::none, const std::unordered_set<std::string>& tags = {}) : ApplicationModule(owner, name, description, hierarchyModifier, tags), mainLoopStarted(2) {} ctk::ScalarOutput<T> feedingPush{this, "feedingPush", "MV/m", "Some output scalar"}; ctk::ScalarPushInput<T> consumingPush{this, "consumingPush", "MV/m", "Description"}; ctk::ScalarPushInput<T> consumingPush2{this, "consumingPush2", "MV/m", "Description"}; ctk::ScalarPushInput<T> consumingPush3{this, "consumingPush3", "MV/m", "Description"}; ctk::ScalarPollInput<T> consumingPoll{this, "consumingPoll", "MV/m", "Description"}; ctk::ScalarPollInput<T> consumingPoll2{this, "consumingPoll2", "MV/m", "Description"}; ctk::ScalarPollInput<T> consumingPoll3{this, "consumingPoll3", "MV/m", "Description"}; ctk::ArrayPollInput<T> consumingPollArray{this, "consumingPollArray", "m", 10, "Description"}; ctk::ArrayPushInput<T> consumingPushArray{this, "consumingPushArray", "m", 10, "Description"}; ctk::ArrayOutput<T> feedingArray{this, "feedingArray", "m", 10, "Description"}; ctk::ArrayOutput<T> feedingPseudoArray{this, "feedingPseudoArray", "m", 1, "Description"}; ctk::ScalarPollInput<T> lateConstrScalarPollInput; ctk::ScalarPushInput<T> lateConstrScalarPushInput; ctk::ScalarOutput<T> lateConstrScalarOutput; ctk::ArrayPollInput<T> lateConstrArrayPollInput; ctk::ArrayPushInput<T> lateConstrArrayPushInput; ctk::ArrayOutput<T> lateConstrArrayOutput; // We do not use testable mode for this test, so we need this barrier to synchronise to the beginning of the // mainLoop(). This is required since the mainLoopWrapper accesses the module variables before the start of the // mainLoop. // execute this right after the Application::run(): // app.testModule.mainLoopStarted.wait(); // make sure the module's mainLoop() is entered boost::barrier mainLoopStarted; void prepare() override { incrementDataFaultCounter(); // force all outputs to invalid writeAll(); // write initial values decrementDataFaultCounter(); // validity according to input validity } void mainLoop() override { mainLoopStarted.wait(); } }; /*********************************************************************************************************************/ /* dummy application */ template<typename T> struct TestApplication : public ctk::Application { TestApplication() : Application("testSuite") {} ~TestApplication() { shutdown(); } using Application::makeConnections; // we call makeConnections() manually in // the tests to catch exceptions etc. void defineConnections() {} // the setup is done in the tests TestModule<T> testModule{this, "testModule", "The test module"}; }; /*********************************************************************************************************************/ /* test case for two scalar accessors in push mode */ BOOST_AUTO_TEST_CASE_TEMPLATE(testTwoScalarPushAccessors, T, test_types) { std::cout << "*** testTwoScalarPushAccessors<" << typeid(T).name() << ">" << std::endl; TestApplication<T> app; app.testModule.feedingPush >> app.testModule.consumingPush; app.initialise(); app.run(); app.testModule.mainLoopStarted.wait(); // make sure the module's mainLoop() is entered // single theaded test app.testModule.consumingPush = 0; app.testModule.feedingPush = 42; BOOST_CHECK(app.testModule.consumingPush == 0); app.testModule.feedingPush.write(); BOOST_CHECK(app.testModule.consumingPush == 0); app.testModule.consumingPush.read(); BOOST_CHECK(app.testModule.consumingPush == 42); // launch read() on the consumer asynchronously and make sure it does not yet // receive anything auto futRead = std::async(std::launch::async, [&app] { app.testModule.consumingPush.read(); }); BOOST_CHECK(futRead.wait_for(std::chrono::milliseconds(200)) == std::future_status::timeout); BOOST_CHECK(app.testModule.consumingPush == 42); // write to the feeder app.testModule.feedingPush = 120; app.testModule.feedingPush.write(); // check that the consumer now receives the just written value BOOST_CHECK(futRead.wait_for(std::chrono::milliseconds(2000)) == std::future_status::ready); BOOST_CHECK(app.testModule.consumingPush == 120); } /*********************************************************************************************************************/ /* test case for four scalar accessors in push mode: one feeder and three * consumers */ BOOST_AUTO_TEST_CASE_TEMPLATE(testFourScalarPushAccessors, T, test_types) { std::cout << "*** testFourScalarPushAccessors<" << typeid(T).name() << ">" << std::endl; TestApplication<T> app; // connect in this strange way to test if connection code can handle this. app.testModule.consumingPush >> app.testModule.consumingPush2; app.testModule.feedingPush >> app.testModule.consumingPush2; app.testModule.feedingPush >> app.testModule.consumingPush3; app.initialise(); app.run(); app.testModule.mainLoopStarted.wait(); // make sure the module's mainLoop() is entered // single theaded test app.testModule.consumingPush = 0; app.testModule.consumingPush2 = 2; app.testModule.consumingPush3 = 3; app.testModule.feedingPush = 42; BOOST_CHECK(app.testModule.consumingPush == 0); BOOST_CHECK(app.testModule.consumingPush2 == 2); BOOST_CHECK(app.testModule.consumingPush3 == 3); app.testModule.feedingPush.write(); BOOST_CHECK(app.testModule.consumingPush == 0); BOOST_CHECK(app.testModule.consumingPush2 == 2); BOOST_CHECK(app.testModule.consumingPush3 == 3); app.testModule.consumingPush.read(); BOOST_CHECK(app.testModule.consumingPush == 42); BOOST_CHECK(app.testModule.consumingPush2 == 2); BOOST_CHECK(app.testModule.consumingPush3 == 3); app.testModule.consumingPush2.read(); BOOST_CHECK(app.testModule.consumingPush == 42); BOOST_CHECK(app.testModule.consumingPush2 == 42); BOOST_CHECK(app.testModule.consumingPush3 == 3); app.testModule.consumingPush3.read(); BOOST_CHECK(app.testModule.consumingPush == 42); BOOST_CHECK(app.testModule.consumingPush2 == 42); BOOST_CHECK(app.testModule.consumingPush3 == 42); // launch read() on the consumers asynchronously and make sure it does not yet // receive anything auto futRead = std::async(std::launch::async, [&app] { app.testModule.consumingPush.read(); }); auto futRead2 = std::async(std::launch::async, [&app] { app.testModule.consumingPush2.read(); }); auto futRead3 = std::async(std::launch::async, [&app] { app.testModule.consumingPush3.read(); }); BOOST_CHECK(futRead.wait_for(std::chrono::milliseconds(200)) == std::future_status::timeout); BOOST_CHECK(futRead2.wait_for(std::chrono::milliseconds(1)) == std::future_status::timeout); BOOST_CHECK(futRead3.wait_for(std::chrono::milliseconds(1)) == std::future_status::timeout); BOOST_CHECK(app.testModule.consumingPush == 42); BOOST_CHECK(app.testModule.consumingPush2 == 42); BOOST_CHECK(app.testModule.consumingPush3 == 42); // write to the feeder app.testModule.feedingPush = 120; app.testModule.feedingPush.write(); // check that the consumers now receive the just written value BOOST_CHECK(futRead.wait_for(std::chrono::milliseconds(2000)) == std::future_status::ready); BOOST_CHECK(futRead2.wait_for(std::chrono::milliseconds(2000)) == std::future_status::ready); BOOST_CHECK(futRead3.wait_for(std::chrono::milliseconds(2000)) == std::future_status::ready); BOOST_CHECK(app.testModule.consumingPush == 120); BOOST_CHECK(app.testModule.consumingPush2 == 120); BOOST_CHECK(app.testModule.consumingPush3 == 120); } /*********************************************************************************************************************/ /* test case for two scalar accessors, feeder in push mode and consumer in poll * mode */ BOOST_AUTO_TEST_CASE_TEMPLATE(testTwoScalarPushPollAccessors, T, test_types) { std::cout << "*** testTwoScalarPushPollAccessors<" << typeid(T).name() << ">" << std::endl; TestApplication<T> app; app.testModule.feedingPush >> app.testModule.consumingPoll; app.initialise(); app.run(); app.testModule.mainLoopStarted.wait(); // make sure the module's mainLoop() is entered // single theaded test only, since read() does not block in this case app.testModule.consumingPoll = 0; app.testModule.feedingPush = 42; BOOST_CHECK(app.testModule.consumingPoll == 0); app.testModule.feedingPush.write(); BOOST_CHECK(app.testModule.consumingPoll == 0); app.testModule.consumingPoll.read(); BOOST_CHECK(app.testModule.consumingPoll == 42); app.testModule.consumingPoll.read(); BOOST_CHECK(app.testModule.consumingPoll == 42); app.testModule.consumingPoll.read(); BOOST_CHECK(app.testModule.consumingPoll == 42); app.testModule.feedingPush = 120; BOOST_CHECK(app.testModule.consumingPoll == 42); app.testModule.feedingPush.write(); BOOST_CHECK(app.testModule.consumingPoll == 42); app.testModule.consumingPoll.read(); BOOST_CHECK(app.testModule.consumingPoll == 120); app.testModule.consumingPoll.read(); BOOST_CHECK(app.testModule.consumingPoll == 120); app.testModule.consumingPoll.read(); BOOST_CHECK(app.testModule.consumingPoll == 120); } /*********************************************************************************************************************/ /* test case for two array accessors in push mode */ BOOST_AUTO_TEST_CASE_TEMPLATE(testTwoArrayAccessors, T, test_types) { std::cout << "*** testTwoArrayAccessors<" << typeid(T).name() << ">" << std::endl; TestApplication<T> app; app.testModule.feedingArray >> app.testModule.consumingPushArray; app.initialise(); app.run(); app.testModule.mainLoopStarted.wait(); // make sure the module's mainLoop() is entered BOOST_CHECK(app.testModule.feedingArray.getNElements() == 10); BOOST_CHECK(app.testModule.consumingPushArray.getNElements() == 10); // single theaded test for(auto& val : app.testModule.consumingPushArray) val = 0; for(unsigned int i = 0; i < 10; ++i) app.testModule.feedingArray[i] = 99 + (T)i; for(auto& val : app.testModule.consumingPushArray) BOOST_CHECK(val == 0); app.testModule.feedingArray.write(); for(auto& val : app.testModule.consumingPushArray) BOOST_CHECK(val == 0); app.testModule.consumingPushArray.read(); for(unsigned int i = 0; i < 10; ++i) BOOST_CHECK(app.testModule.consumingPushArray[i] == 99 + (T)i); // launch read() on the consumer asynchronously and make sure it does not yet // receive anything auto futRead = std::async(std::launch::async, [&app] { app.testModule.consumingPushArray.read(); }); BOOST_CHECK(futRead.wait_for(std::chrono::milliseconds(200)) == std::future_status::timeout); for(unsigned int i = 0; i < 10; ++i) BOOST_CHECK(app.testModule.consumingPushArray[i] == 99 + (T)i); // write to the feeder for(unsigned int i = 0; i < 10; ++i) app.testModule.feedingArray[i] = 42 - (T)i; app.testModule.feedingArray.write(); // check that the consumer now receives the just written value BOOST_CHECK(futRead.wait_for(std::chrono::milliseconds(2000)) == std::future_status::ready); for(unsigned int i = 0; i < 10; ++i) BOOST_CHECK(app.testModule.consumingPushArray[i] == 42 - (T)i); } /*********************************************************************************************************************/ /* test case for late constructing accessors */ BOOST_AUTO_TEST_CASE_TEMPLATE(testLateConstruction, T, test_types) { std::cout << "*** testLateConstruction<" << typeid(T).name() << ">" << std::endl; TestApplication<T> app; // create the scalars app.testModule.lateConstrScalarPollInput.replace(ctk::ScalarPollInput<T>(&app.testModule, "LateName1", "", "")); app.testModule.lateConstrScalarPushInput.replace(ctk::ScalarPushInput<T>(&app.testModule, "LateName2", "", "")); app.testModule.lateConstrScalarOutput.replace(ctk::ScalarOutput<T>(&app.testModule, "LateName3", "", "")); // connect the scalars app.testModule.lateConstrScalarOutput >> app.testModule.lateConstrScalarPollInput; app.testModule.feedingPush >> app.testModule.lateConstrScalarPushInput; // create the arrays app.testModule.lateConstrArrayPollInput.replace(ctk::ArrayPollInput<T>(&app.testModule, "LateName4", "", 10, "")); app.testModule.lateConstrArrayPushInput.replace(ctk::ArrayPushInput<T>(&app.testModule, "LateName5", "", 10, "")); app.testModule.lateConstrArrayOutput.replace(ctk::ArrayOutput<T>(&app.testModule, "LateName6", "", 10, "")); // connect the arrays app.testModule.lateConstrArrayOutput >> app.testModule.lateConstrArrayPollInput; app.testModule.feedingArray >> app.testModule.lateConstrArrayPushInput; // run the app app.initialise(); app.run(); app.testModule.mainLoopStarted.wait(); // make sure the module's mainLoop() is entered // test the scalars app.testModule.feedingPush = 42; app.testModule.feedingPush.write(); app.testModule.lateConstrScalarPushInput.read(); BOOST_CHECK(app.testModule.lateConstrScalarPushInput == 42); app.testModule.feedingPush = 43; app.testModule.feedingPush.write(); app.testModule.lateConstrScalarPushInput.read(); BOOST_CHECK(app.testModule.lateConstrScalarPushInput == 43); app.testModule.lateConstrScalarOutput = 120; app.testModule.lateConstrScalarOutput.write(); app.testModule.lateConstrScalarPollInput.read(); BOOST_CHECK_EQUAL(app.testModule.lateConstrScalarPollInput, 120); app.testModule.lateConstrScalarPollInput.read(); BOOST_CHECK_EQUAL(app.testModule.lateConstrScalarPollInput, 120); // test the arrays app.testModule.feedingArray = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; app.testModule.feedingArray.write(); app.testModule.lateConstrArrayPushInput.read(); for(T i = 0; i < 10; ++i) BOOST_CHECK_EQUAL(app.testModule.lateConstrArrayPushInput[i], i + 1); app.testModule.feedingArray = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}; app.testModule.feedingArray.write(); app.testModule.lateConstrArrayPushInput.read(); for(T i = 0; i < 10; ++i) BOOST_CHECK_EQUAL(app.testModule.lateConstrArrayPushInput[i], (i + 1) * 10); app.testModule.lateConstrArrayOutput = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; app.testModule.lateConstrArrayOutput.write(); app.testModule.lateConstrArrayPollInput.read(); for(T i = 0; i < 10; ++i) BOOST_CHECK_EQUAL(app.testModule.lateConstrArrayPollInput[i], i); app.testModule.lateConstrArrayPollInput.read(); for(T i = 0; i < 10; ++i) BOOST_CHECK_EQUAL(app.testModule.lateConstrArrayPollInput[i], i); } /*********************************************************************************************************************/ /* test case for connecting array of length 1 with scalar */ BOOST_AUTO_TEST_CASE_TEMPLATE(testPseudoArray, T, test_types) { std::cout << "*** testPseudoArray<" << typeid(T).name() << ">" << std::endl; TestApplication<T> app; app.testModule.feedingPseudoArray >> app.testModule.consumingPush; // run the app app.initialise(); app.run(); app.testModule.mainLoopStarted.wait(); // make sure the module's mainLoop() is entered // test data transfer app.testModule.feedingPseudoArray[0] = 33; app.testModule.feedingPseudoArray.write(); app.testModule.consumingPush.read(); BOOST_CHECK(app.testModule.consumingPush == 33); } /*********************************************************************************************************************/ /* test case for "merging" two networks */ BOOST_AUTO_TEST_CASE_TEMPLATE(testMergeNetworks, T, test_types) { ChimeraTK::BackendFactory::getInstance().setDMapFilePath("test.dmap"); TestApplication<T> app; // This creates a first network app.testModule.feedingPush >> app.testModule.consumingPush; // This creates a second network with only consumers app.testModule.consumingPush2 >> app.testModule.consumingPush3; // This merges the two networks app.testModule.consumingPush >> app.testModule.consumingPush2; // run the app app.initialise(); app.run(); app.testModule.mainLoopStarted.wait(); // make sure the module's mainLoop() is entered // test data transfer app.testModule.feedingPush = 44; app.testModule.feedingPush.write(); BOOST_CHECK(app.testModule.consumingPush.readLatest() == true); BOOST_CHECK(app.testModule.consumingPush == 44); BOOST_CHECK(app.testModule.consumingPush2.readLatest() == true); BOOST_CHECK(app.testModule.consumingPush2 == 44); BOOST_CHECK(app.testModule.consumingPush3.readLatest() == true); BOOST_CHECK(app.testModule.consumingPush3 == 44); } /*********************************************************************************************************************/ /* test automatic constants by variable names */ BOOST_AUTO_TEST_CASE_TEMPLATE(testAutoConstants, T, test_types) { std::cout << "*** testAutoConstants<" << typeid(T).name() << ">" << std::endl; TestApplication<T> app; T theValue = 42; app.testModule.consumingPush.setMetaData(ctk::EntityOwner::constant(theValue), "", ""); app.initialise(); app.run(); // make sure the module's mainLoop() is entered, so inital values are propagated app.testModule.mainLoopStarted.wait(); BOOST_CHECK_EQUAL(T(app.testModule.consumingPush), theValue); }