/* * DeviceModule.cc * * Created on: Jun 27, 2016 * Author: Martin Hierholzer */ //#include <ChimeraTK/Device.h> #include <ChimeraTK/DeviceBackend.h> #include "Application.h" #include "DeviceModule.h" //#include "ControlSystemModule.h" namespace ChimeraTK { /*********************************************************************************************************************/ namespace detail { DeviceModuleProxy::DeviceModuleProxy(const DeviceModule& owner, const std::string& registerNamePrefix) : Module(nullptr, registerNamePrefix.substr(registerNamePrefix.find_last_of("/") + 1), ""), _myowner(&owner), _registerNamePrefix(registerNamePrefix) {} DeviceModuleProxy::DeviceModuleProxy(DeviceModuleProxy&& other) : Module(std::move(other)), _myowner(std::move(other._myowner)), _registerNamePrefix(std::move(other._registerNamePrefix)) {} VariableNetworkNode DeviceModuleProxy::operator()( const std::string& registerName, UpdateMode mode, const std::type_info& valueType, size_t nElements) const { return (*_myowner)(_registerNamePrefix + "/" + registerName, mode, valueType, nElements); } VariableNetworkNode DeviceModuleProxy::operator()( const std::string& registerName, const std::type_info& valueType, size_t nElements, UpdateMode mode) const { return (*_myowner)(_registerNamePrefix + "/" + registerName, valueType, nElements, mode); } VariableNetworkNode DeviceModuleProxy::operator()(const std::string& variableName) const { return (*_myowner)(_registerNamePrefix + "/" + variableName); } Module& DeviceModuleProxy::operator[](const std::string& moduleName) const { return _myowner->getProxy(_registerNamePrefix + "/" + moduleName); } const Module& DeviceModuleProxy::virtualise() const { return _myowner->virtualise().submodule(_registerNamePrefix); } void DeviceModuleProxy::connectTo(const Module& target, VariableNetworkNode trigger) const { _myowner->virtualiseFromCatalog().submodule(_registerNamePrefix).connectTo(target, trigger); } DeviceModuleProxy& DeviceModuleProxy::operator=(DeviceModuleProxy&& other) { _name = std::move(other._name); _myowner = std::move(other._myowner); _registerNamePrefix = std::move(other._registerNamePrefix); return *this; } } // namespace detail /*********************************************************************************************************************/ DeviceModule::DeviceModule(Application* application, const std::string& _deviceAliasOrURI, std::function<void(DeviceModule*)> initialisationHandler) : Module(nullptr, "<Device:" + _deviceAliasOrURI + ">", ""), deviceAliasOrURI(_deviceAliasOrURI), registerNamePrefix(""), owner(application) { application->registerDeviceModule(this); if(initialisationHandler) { initialisationHandlers.push_back(initialisationHandler); } } /*********************************************************************************************************************/ DeviceModule::~DeviceModule() { assert(!moduleThread.joinable()); owner->unregisterDeviceModule(this); } /*********************************************************************************************************************/ VariableNetworkNode DeviceModule::operator()( const std::string& registerName, UpdateMode mode, const std::type_info& valueType, size_t nElements) const { return {registerName, deviceAliasOrURI, registerNamePrefix / registerName, mode, {VariableDirection::invalid, false}, valueType, nElements}; } /*********************************************************************************************************************/ Module& DeviceModule::operator[](const std::string& moduleName) const { assert(moduleName.find_first_of("/") == std::string::npos); return getProxy(moduleName); } /*********************************************************************************************************************/ detail::DeviceModuleProxy& DeviceModule::getProxy(const std::string& fullName) const { if(proxies.find(fullName) == proxies.end()) { proxies[fullName] = {*this, fullName}; } return proxies[fullName]; } /*********************************************************************************************************************/ const Module& DeviceModule::virtualise() const { return *this; } /*********************************************************************************************************************/ void DeviceModule::connectTo(const Module& target, VariableNetworkNode trigger) const { auto& cat = virtualiseFromCatalog(); cat.connectTo(target, trigger); } /*********************************************************************************************************************/ VirtualModule& DeviceModule::virtualiseFromCatalog() const { if(virtualisedModuleFromCatalog_isValid) return virtualisedModuleFromCatalog; virtualisedModuleFromCatalog = VirtualModule(deviceAliasOrURI, "Device module", ModuleType::Device); if(!deviceIsInitialized) { device = Device(deviceAliasOrURI); deviceIsInitialized = true; } // obtain register catalogue auto catalog = device.getRegisterCatalogue(); // iterate catalogue, create VariableNetworkNode for all registers starting // with the registerNamePrefix size_t prefixLength = registerNamePrefix.length(); for(auto& reg : catalog) { if(std::string(reg.getRegisterName()).substr(0, prefixLength) != std::string(registerNamePrefix)) continue; // ignore 2D registers if(reg.getNumberOfDimensions() > 1) continue; // guess direction and determine update mode VariableDirection direction; UpdateMode updateMode; if(reg.isWriteable()) { direction = {VariableDirection::consuming, false}; updateMode = UpdateMode::push; } else { direction = {VariableDirection::feeding, false}; if(reg.getSupportedAccessModes().has(AccessMode::wait_for_new_data)) { updateMode = UpdateMode::push; } else { updateMode = UpdateMode::poll; } } // guess type const std::type_info* valTyp{&typeid(AnyType)}; auto& dd = reg.getDataDescriptor(); // numeric, string, boolean, nodata, undefined if(dd.fundamentalType() == RegisterInfo::FundamentalType::numeric) { if(dd.isIntegral()) { if(dd.isSigned()) { if(dd.nDigits() > 11) { valTyp = &typeid(int64_t); } else if(dd.nDigits() > 6) { valTyp = &typeid(int32_t); } else if(dd.nDigits() > 4) { valTyp = &typeid(int16_t); } else { valTyp = &typeid(int8_t); } } else { if(dd.nDigits() > 10) { valTyp = &typeid(uint64_t); } else if(dd.nDigits() > 5) { valTyp = &typeid(uint32_t); } else if(dd.nDigits() > 3) { valTyp = &typeid(uint16_t); } else { valTyp = &typeid(uint8_t); } } } else { // fractional valTyp = &typeid(double); } } else if(dd.fundamentalType() == RegisterInfo::FundamentalType::boolean) { valTyp = &typeid(int32_t); } else if(dd.fundamentalType() == RegisterInfo::FundamentalType::string) { valTyp = &typeid(std::string); } else if(dd.fundamentalType() == RegisterInfo::FundamentalType::nodata) { valTyp = &typeid(int32_t); } auto name = std::string(reg.getRegisterName()).substr(prefixLength); auto lastSlash = name.find_last_of("/"); std::string dirname, basename; if(lastSlash != std::string::npos) { dirname = name.substr(0, lastSlash); basename = name.substr(lastSlash + 1); } else { dirname = ""; basename = name; } VariableNetworkNode node( basename, deviceAliasOrURI, reg.getRegisterName(), updateMode, direction, *valTyp, reg.getNumberOfElements()); virtualisedModuleFromCatalog.createAndGetSubmoduleRecursive(dirname).addAccessor(node); } virtualisedModuleFromCatalog_isValid = true; return virtualisedModuleFromCatalog; } /*********************************************************************************************************************/ void DeviceModule::reportException(std::string errMsg) { try { if(owner->isTestableModeEnabled()) { assert(owner->testableModeTestLock()); } // The error queue must only be modified when holding both mutexes (error mutex and testable mode mutex), because // the testable mode counter must always be consistent with the content of the queue. // To avoid deadlocks you must always first aquire the testable mode mutex if you need both. // You can hold the error mutex without holding the testable mode mutex (for instance for checking the error predicate), // but then you must not try to aquire the testable mode mutex! std::unique_lock<std::mutex> errorLock(errorMutex); if(!deviceHasError) { // only report new errors if the device does not have reported errors already if(errorQueue.push(errMsg)) { if(owner->isTestableModeEnabled()) ++owner->testableMode_counter; } // else do nothing. There are plenty of errors reported already: The queue is full. // set the error flag and notify the other threads deviceHasError = true; errorLock.unlock(); errorIsReportedCondVar.notify_all(); } else { errorLock.unlock(); } } catch(...) { //catch any to notify the waiting thread(s) (exception handling thread), then re-throw errorIsReportedCondVar.notify_all(); throw; } } /*********************************************************************************************************************/ void DeviceModule::waitForRecovery() { try { if(owner->isTestableModeEnabled()) { assert(owner->testableModeTestLock()); } // see waitForException std::unique_lock<std::mutex> errorLock(errorMutex); errorLock.unlock(); //Wait until the error condition has been cleared by the exception handling thread. //We must not hold the testable mode mutex while doing so, otherwise the other thread will never run to fulfill the condition owner->testableModeUnlock("waitForDeviceOK"); errorLock.lock(); while(deviceHasError) { errorIsResolvedCondVar.wait(errorLock); boost::this_thread::interruption_point(); } errorLock.unlock(); owner->testableModeLock("continueAfterException"); } catch(...) { //catch any to notify the waiting thread(s) (exception handling thread), then re-throw errorIsReportedCondVar.notify_all(); throw; } } /*********************************************************************************************************************/ void DeviceModule::handleException() { Application::registerThread("DM_" + getName()); std::string error; owner->testableModeLock("Startup"); try { while(!device.isOpened()) { try { boost::this_thread::interruption_point(); usleep(500000); device.open(); if(deviceError.status != 0) { deviceError.status = 0; deviceError.message = ""; deviceError.setCurrentVersionNumber({}); deviceError.writeAll(); } } catch(ChimeraTK::runtime_error& e) { if(deviceError.status != 1) { deviceError.status = 1; deviceError.message = e.what(); deviceError.setCurrentVersionNumber({}); deviceError.writeAll(); } } } // The device was successfully opened, try to initialise it try { for(auto& initHandler : initialisationHandlers) { initHandler(this); } for(auto& te : writeAfterOpen) { te->write(); } } catch(ChimeraTK::runtime_error& e) { // we just report the exception and let the exception handling loop do the rest std::lock_guard<std::mutex> locakGuard(errorMutex); deviceHasError = true; if(errorQueue.push(e.what())) { if(owner->isTestableModeEnabled()) ++owner->testableMode_counter; } } while(true) { // We need one interruption point at the beginning of the loop. It is always executed and is not blocked by a lock (except the testable mode lock) boost::this_thread::interruption_point(); // release the testable mode mutex for waiting for the exception. owner->testableModeUnlock("Wait for exception"); // Do not modify the queue without holding the testable mode lock, because we also consitenly have to modify the counter protected by that mutex. // Just check the condition variable. std::unique_lock<std::mutex> errorLock(errorMutex); while(!deviceHasError) { boost::this_thread::interruption_point(); // Make sure not to start waiting for the condition variable if // interruption was requested. errorIsReportedCondVar.wait(errorLock); // this releases the mutex while waiting boost::this_thread::interruption_point(); // we need an interruption point in the waiting loop } errorLock.unlock(); // We must not hold the error lock when getting the testable mode mutex to avoid deadlocks! owner->testableModeLock("Process exception"); errorLock.lock(); // we need both locks to modify the queue, so get it again. auto popResult = errorQueue.pop(error); (void)popResult; assert(popResult); // this if should always be true, otherwise the condition variable logic is wrong if(owner->isTestableModeEnabled()) { assert(owner->testableMode_counter > 0); --owner->testableMode_counter; } // report exception to the control system deviceError.status = 1; deviceError.message = error; deviceError.setCurrentVersionNumber({}); deviceError.writeAll(); // wait some time until retrying. // Never sleep when holding a lock errorLock.unlock(); // we must not hold the error lock when not having the testable mode mutex owner->testableModeUnlock("Wait for recovery"); do { usleep(500000); boost::this_thread::interruption_point(); try { // This triggers a recovery (device is already opened). device.open(); } catch(ChimeraTK::runtime_error&) { // Recovery failed. Just catch the exception and retry. continue; // should not be necessary because isFunctional() should return false. But no harm in leaving it in. } } while(!device.isFunctional()); owner->testableModeLock("Try recovery"); errorLock.lock(); // FIXME: we have to wait here until the device reports that it is functional again. // Otherwise we spam the error reporting with 2 Hz. try { // re-initialise the device before continuing for(auto& initHandler : initialisationHandlers) { initHandler(this); } { // scope for the lock guard boost::unique_lock<boost::shared_mutex> uniqueLock(recoverySharedMutex); for(auto& te : writeRecoveryOpen) { te->write(); } } // end of scope for the lock guard } catch(ChimeraTK::runtime_error& e) { // Report the error. This puts the exception to the queue and we can continue with waiting for the queue. // It is sure we will enter it again because we just pushed to it, so if the device recovers we will notice. // Do not use reportError, which would just do the mutext business in addition to pushing to the queue, but we already have the mutex. if(errorQueue.push(e.what())) { if(owner->isTestableModeEnabled()) ++owner->testableMode_counter; } continue; } // We survived the initialisation (if any). It seems the device is working again. // Empty exception reporting queue. while(errorQueue.pop()) { if(owner->isTestableModeEnabled()) { assert(owner->testableMode_counter > 0); --owner->testableMode_counter; } } // Reset exception state and wait for the next error to be reported. deviceError.status = 0; deviceError.message = ""; deviceError.setCurrentVersionNumber({}); deviceError.writeAll(); deviceHasError = false; // send the trigger that the device is available again deviceBecameFunctional.write(); errorLock.unlock(); errorIsResolvedCondVar.notify_all(); } } catch(...) { // before we leave this thread, we might need to notify other waiting // threads. boost::this_thread::interruption_point() throws an exception // when the thread should be interrupted, so we will end up here errorIsResolvedCondVar.notify_all(); throw; } } /*********************************************************************************************************************/ void DeviceModule::prepare() { if(!deviceIsInitialized) { device = Device(deviceAliasOrURI); deviceIsInitialized = true; } } /*********************************************************************************************************************/ /*********************************************************************************************************************/ void DeviceModule::run() { // start the module thread assert(!moduleThread.joinable()); moduleThread = boost::thread(&DeviceModule::handleException, this); } /*********************************************************************************************************************/ void DeviceModule::terminate() { if(moduleThread.joinable()) { moduleThread.interrupt(); errorIsReportedCondVar .notify_all(); // the terminating thread will notify the threads waiting for errorIsResolvedCondVar moduleThread.join(); } assert(!moduleThread.joinable()); } /*********************************************************************************************************************/ void DeviceModule::defineConnections() { // replace all slashes in the deviceAliasOrURI, because URIs might contain slashes and they are not allowed in // module names std::string deviceAliasOrURI_withoutSlashes = deviceAliasOrURI; size_t i = 0; while((i = deviceAliasOrURI_withoutSlashes.find_first_of('/', i)) != std::string::npos) { deviceAliasOrURI_withoutSlashes[i] = '_'; } // Connect deviceError module to the control system ControlSystemModule cs; deviceError.connectTo(cs["Devices"][deviceAliasOrURI_withoutSlashes]); deviceBecameFunctional >> cs["Devices"][deviceAliasOrURI_withoutSlashes]("deviceBecameFunctional"); } void DeviceModule::addInitialisationHandler(std::function<void(DeviceModule*)> initialisationHandler) { initialisationHandlers.push_back(initialisationHandler); } void DeviceModule::notify() { errorIsResolvedCondVar.notify_all(); } void DeviceModule::addRecoveryAccessor(boost::shared_ptr<TransferElement> recoveryAccessor) { writeRecoveryOpen.push_back(recoveryAccessor); } boost::shared_lock<boost::shared_mutex> DeviceModule::getRecoverySharedLock() { return boost::shared_lock<boost::shared_mutex>(recoverySharedMutex); } } // namespace ChimeraTK