
I. ENGERGY CORRECTIONS

The exact solution including the relativistic corrections is defined by[
Ĥ0 + λĤ ′

]
φ~ν = ε~νφ~ν , (1)

where ~ν represents the collection of all the quantum numbers. Ĥ0 is the zeroth order

Hamiltonian,

Ĥ0 = −1

2
∇2 + V (r). (2)

The function V (r) is the Hartree Fock Slater potential. Let φ
(0)
~ν and ε

(0)
nl be the eigen

functions and eigen energies of Ĥ0,

Ĥ0φ
(0)
~ν = ε

(0)
nl φ

(0)
~ν . (3)

Note that the the zeroth order eigen energy only depends on n and l. Since the lstate has

2(2l + 1) degeneracy, we work on degenerate perturbation theory. The perturbation series

of the exact wave function and energy are given by

φ~ν = ϕ
(0)
~ν + λφ

(1)
~ν + · · · , (4a)

ε~ν = ε
(0)
nl + λε

(1)
~ν + · · · (4b)

We introduce the total angular momentum operator ĵ,

ĵ = l̂ + ŝ, (5)

where l̂ and ŝ are the operator of the orbital and spin augular momentum. We expand

the zeroth order wave function ϕ
(0)
~ν in terms of the j coupled basis ψ

(0)
nljm, which is the

simaltaneous eigen function of ĵ2, ĵz, Ĥ0, l̂2 and ŝ2 operators,

ĵ2ψ
(0)
nljm = j(j + 1)ψ

(0)
nljm, (6a)

ĵzψ
(0)
nljm = mψ

(0)
nljm. (6b)

The superscript (0) is added to the function ψ
(0)
nljm to emphasize that it is also the eigen

function of Ĥ0. The set of the collection of the quantum numbers ~ν to specify the state is

~ν = (n, l, j,m). (6c)
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The zeroth order wave function ϕ
(0)
~ν is given by

ϕ
(0)
~ν =

∑
j′m′

C
(0)
nlj′m′ψ

(0)
nlj′m′ . (7)

Substituting Eqs. (7) and (4) to Eq. (1), up to the order of λ1, we obtain

(Ĥ ′ − ε(1)
nljm)

∑
j′m′

C
(0)
nlj′m′ψ

(0)
nlj′m′ + (Ĥ0 − ε(0)

nljm)φ
(1)
nljm = 0. (8)

Multiplying ψ
(0)∗
nljm from the left, and integrating over the space, we obtain,∑

j′m′

[
H ′nl,jj′mm′ − ε

(1)
nljmδjj′δmm′

]
C

(0)
nlj′m′ = 0, (9)

where

H ′nl,jj′mm′ =

∫
ψ

(0)∗
nljmH

′ψnlj′m′d~r. (10)

The operators for the relativistic correction terms up to the 2nd order of α are given by

Ĥ ′ = Ĥ ′mass + Ĥ ′SO + Ĥ ′dar, (11a)

where the individual terms are given by

Ĥ ′mass = − p̂
4

8
α2, (11b)

Ĥ ′SO =
α2

2

1

r

dV

dr
l̂ · ŝ, (11c)

Ĥ ′dar = −α
2

4

dV

dr

∂

∂r
. (11d)

The j coupled basis ψ
(0)
nljm can be written by the uncoupled basis,

ψ
(0)
nljm =

∑
mlms

C(lsj;mlmsm)φ
(0)
nlmlms

, (12)

where the coefficient C(lsj;mlmsm) is the Clebsh-Gordan coefficient. The uncoupled basis

is given by,

φ
(0)
nlmlms

=
u

(0)
nl (r)

r
Ylml(Ω)χ 1

2
ms
, (13)

where u
(0)
nl is the radial wave function of zeroth order,[

−1

2

d2

dr2
+
l(l + 1)

2r2
+ V (r)

]
u

(0)
nl = ε

(0)
nl u

(0)
nl , (14)
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Ylm the spherical harmoic, and χ 1
2
ms

the spin wave function. Let us consider the operator

Ô which does not depend on angles, and introduce the notation,

〈u(0)
nl |Ô|u

(0)
nl 〉 =

∫ ∞
0

drr2

(
u

(0)∗
nl

r

)
Ô

(
u

(0)
nl

r

)
. (15)

The matrix element of Ô is calculated as∫
ψ

(0)∗
nljmÔψ

(0)
nlj′m′d~r =

∑
mlms

∑
m′lm

′
s

C(lsj;mlmsm)C(lsj′;m′lm
′
sm
′)〈u(0)

nl |Ô|u
(0)
nl 〉δmlm′lδmsm′s

= 〈u(0)
nl |Ô|u

(0)
nl 〉

∑
mlms

C(lsj;mlmsm)C(lsj′;mlmsm
′)

= 〈u(0)
nl |Ô|u

(0)
nl 〉δjj′δmm′ . (16)

On the last line, the orthogonality of the Clebsh-Gordan coefficient is used. Therefore, it is

found that the mass and Darwin terms are diagonal. Using Eq. (2), the mass term ∆Emass

is given by

∆Emass = −α
2

2
〈u(0)

nl |[ε
(0)
nl − V (r)]2|u(0)

nl 〉, (17)

and the Darwin term ∆Edar,

∆Edar = −α
2

4

∫ ∞
0

u
(0)∗
nl r

dV

dr

d

dr

(
u

(0)
nl

r

)
dr = −α

2

4

∫ ∞
0

u
(0)∗
nl

dV

dr

(
−1

r
+

d

dr

)
u

(0)
nl dr. (18)

It is also shown that the spin-orbit term is diagonal. Since the operator l̂ and ŝ commute

each other,

ĵ2 = l̂2 + 2l̂ · ŝ+ ŝ2. (19)

Thus we obtain,

Ĥ ′SO =
α2

4r
(ĵ2 − l̂2 − ŝ2)

dV

dr
. (20)

With the use of Eqs. (12) and (16), the matrix element is∫ ∞
0

ψ
(0)∗
nljmĤ

′
SOψ

(0)
nlj′m′d~r =

α2

4
[j′(j′ + 1)− l(l + 1)− 3/4]〈u(0)

nl |
1

r

dV

dr
|u(0)
nl 〉δjj′δmm′ . (21)

Therefore, the spin orbit term ∆ESO is given by

∆ESO =
α2

4
[j(j + 1)− l(l + 1)− 3/4]〈u(0)

nl |
1

r

dV

dr
|u(0)
nl 〉

=


0 (j = 1/2).

α2

4
l〈u(0)

nl |1r
dV
dr
|u(0)
nl 〉 (j = l + 1/2),

−α2

4
(l + 1)〈u(0)

nl |1r
dV
dr
|u(0)
nl 〉 (j = l − 1/2).

(22)
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The spin-orbit coupling and Darwin terms involve the derivative of the potential V (r). It

has the singularity at orgin, and the singularity is involved as the lower limit of the radial

integral to calculate the matrix element. In the appendix, we avoid calculating the derivative

of the potential by considering the partial integration. In doing so, we have to calculate the

derivative of the wave function u
(0)
nl , but it is the smooth function in space. Besides, in the

Generalized pseudo spectral (GPS) method, the analytical expression of the derivative of

the wave function is given.

II. PHOTO IONIZATION CROSS SECTION

The cross section for the ith subshell by absorbing photon of energy ωin in the dipole

approximation is given by

σp(i, ωin) = 4π2αωin

∑
a

δ(εa + Ii − ωin)|〈ϕa|z|ϕi〉|2. (23)

Here the external filed is linearly polarized along the z axis. The summation runs over all

the final state satisfying the dipole selection rule for linearly polarized external fields. Since

the equation Eq. (25b) is diagonal with respect to j and m, using the Eq. (12), we can write

down ϕi and ϕa,

ϕi = ψ
(0)
nljm, (24a)

ϕa = ψ
(0)
εal′j′m′

(24b)

where the energy of the final state εa is given by

εa = ε
(0)
nl + ε

(1)
nlj + ωin, (25a)

ε
(1)
nlj = ∆Emass + ∆Edar + ∆ESO. (25b)

The dipole operator does not act on the spin part of the wave function, so the azimuthal

quantum number for the spin must be constant,

m′s = ms. (26)

In what follows, VMK refers to Quantum Theory of Angular Momentum, by Varshalovich,

Moskalev, and Khersonskii. The dipole operator is a irreducible tonsor operator of rank 1,
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so we evaluate the matrix element utlizing the Wigner Eckart theorem (VMK 13.1.1. Eq.

(2)),

〈εal′j′m′|z|nljm〉 =
C(j1j′;m0m′)√

2j′ + 1
〈εal′j′||z||nlj〉. (27)

The Clebsch Gordan coefficient tells us the selection rules for j and m,

j′ = j, j ± 1, (28a)

m′ = m. (28b)

Since the spin-orbit coupled basis functions do not have a parity, so j′ = j is also allowed.

The reduced matrix element is given by (VMK 13.2.1. Eq. (5))

〈εal′j′||z||nlj〉 = (−1)j+l
′+s+1

√
(2j′ + 1)(2j + 1)

 l s j

j′ 1 l′

 〈εal′||z||nl〉. (29)

Substituting Eq. (29) into (36), we have

〈εal′j′m′|z|nljm〉 = (−1)j+l
′+s+1

√
2j + 1C(j1j′;m0m)

 l s j

j′ 1 l′

 〈εal′||z||nl〉. (30)

The Wigner Eckart theorem of the dipole operator z for uncoupled basis is written as

〈εal′m′l|z|nlml〉 =
C(l1l′;ml0m

′
l)√

2l′ + 1
〈εal′||z||nl〉, (31)

so the slection rules for l and ml are given by

l′ = l ± 1 (32a)

m′l = ml. (32b)

Summarising Eqs. (26), (28), and (32), the selection rules are given by

m′s = ms, (33a)

m′l = ml, (33b)

m′ = m = ml +ms, (33c)

l′ = l ± 1, (33d)

j′ = j, j ± 1 (33e)

The left hand side can be calculated analytically as (VMK 5.9.1. Eq. (4))

〈εal′ml|z|nlml〉 =

√
2l + 1

2l′ + 1
〈εal′|r|nl〉C(l1l′; 000)C(l1l′;ml0ml). (34)
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Therefore, we obtain the reduced matrix element in Eq. (31),

〈εal′||z||nl〉 =
√

2l + 1C(l1l′; 000)〈εal′|r|nl〉 = (−1)
l+1−l′

2

√
l>〈εal′|r|nl〉, (35)

where the symbol l> is the bigger of l and l′. Substituting Eq. (35) into Eq. (30),

〈εal′j′m|z|nljm〉 = (−1)j+l
′+s+1+ l+1−l′

2 C(j1j′;m0m′)
√

(2j + 1)l>

 l s j

j′ 1 l′

 〈εal′|r|nl〉.
(36)

Using the orthogonaliy of the Clebsch Gordan coefficient (VMK 8.1.1. Eq. (8) and 8.4.4.

Eq. (17)),

j∑
m=−j

C2(j1j′;m0m) =
2j′ + 1

3

j∑
m=−j

C2(jj′1;m−m0) =
2j′ + 1

3
, (37)

the m-averaged matrix element squared become,

1

2j + 1

j∑
m=−j

|〈εal′j′m|z|nljm〉|2 =
l>(2j′ + 1)

3

 l s j

j′ 1 l′


2

|〈εal′|r|nl〉|2. (38)

The photo ionization cross section is obtained taking the summation for the above formula

over l′ and j′, whose ranges are given by the selection rule, Eqs. (33),

σp(i, ωin) =
4

3
π2αωin

l+1∑
l′=|l−1|

j+1∑
j′=|j−1|

l>(2j′ + 1)|〈εal′|r|nl〉|2
 l s j

j′ 1 l′


2

. (39)

Using the symmetry and orthogonality of the 6j symbol (VMK 9.4.2. Eq. (2) and 9.8. Eq.

(3))

j+1∑
j′=|j−1|

(2j′ + 1)

 1 j j′

s l′ l


2

=
1

2l + 1
. (40)

With the use of this, Eq. (39) is reduced to

σp(i, ωin) =
4

3
π2αωin

l+1∑
l′=|l−1|

l>
2l + 1

|〈εal′|r|nl〉|2. (41)

Let Nj be the number of electron occupying the ith subshell, then the total photo ionization

cross section is given by

σtot
p (i, ωin) = Njσp(i, ωin) =

4

3
π2αωinNj

l+1∑
l′=|l−1|

l>
2l + 1

|〈εal′|r|nl〉|2. (42)
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III. AUGER RATE

The auger rate is defined by

Γi,qq′ = 2π
∑
a

|vaiqq′ − vaiq′q|2δ(εa + εi − εq − εq′), (43a)

where the notation a and i refer to the Auguer electron and the initial hole in the orbial i,

and q and q′ the final holes. The summation for a runs over all the possible states for the

Auger electron. The quantity vaiqq′ and vaiq′q represents the matrix element of the direct

and exchange terms for the two body operator. The multipole expansion of the two body

operator is given by

1

r12

=
∞∑
k=0

k∑
µ=−k

rk<
rk+1
>

(−1)µCkµ(Ω1)Ck−µ(Ω2), (44a)

where

Ckµ(Ω) =

√
4π

2k + 1
Ykµ(Ω). (44b)

The summation running over µ gives us the scalar product of the tensor operator of rank k.

Introduing the scalar quantity T0(k),

T0(k) =
k∑

µ=−k

(−1)µCkµ(Ω1)Ck−µ(Ω2), (44c)

the two body oeprator is written as

1

r12

=
∞∑
k=0

rk<
rk+1
>

T0(k). (44d)

A. non relativistc case

The direct term vaiqq′ is given by

vaiqq′ = 〈εalamlasmsa;nilimlismsi|
1

r12

|nqlqmlqsmsq;nq′lq′mlq′smsq′〉. (45)

Introducing the LSJM basis, we cast the above matrix element into

vaiqq′ =
∑
L′ML′

∑
S′MS′

∑
J ′M ′

∑
LML

∑
SMS

∑
JM

C(laliL
′;mlamliML′)C(ssS ′;msamsiMS′)C(L′S ′J ′;ML′MS′M

′)

× C(lqlq′L;mlqmlq′ML)C(ssS;msqmsq′MS)C(LSJ ;MLMSM)

× 〈laliL′S ′J ′M ′| 1

r12

|lqlq′LSJM〉. (46)
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Let us define the radial integral,

Rk(aiqq
′) =

∫ ∞
0

dr1

∫ ∞
0

dr2uεala(r1)unili(r2)
rk<
rk+1
>

unqlq(r1)unq′ lq′ (r2). (47)

Substituting Eq. (C.5),

vaiqq′ =
∑
LML

∑
SMS

∑
JM

C(laliL;mlamliML)C(ssS;msamsiMS)

× C(lqlq′L;mlqmlq′ML)C(ssS;msqmsq′MS)

× C2(LSJ ;MLMSM)(−1)L+lq+li

∞∑
k=0

Rk(aiqq
′)AkL(aiqq′)

=
∑
LML

∑
SMS

C(laliL;mlamliML)C(ssS;msamsiMS)

× C(lqlq′L;mlqmlq′ML)C(ssS;msqmsq′MS)

× (−1)L+lq+li

∞∑
k=0

Rk(aiqq
′)AkL(aiqq′).

We know that only the terms of M ′ = M and ML′ = ML contribute to the summation. This

tells us that we also only need to take MS′ = MS. And the summation over J and M are

carried out using the orthogonality of the Clebsch-Gordan coefficients. We further multiply

the constant τ to this quantity to keep the normalization of the LSJM basis function, and

redefine the quantity vaiqq′ , namely,

vaiqq′ = τ
∑
LML

∑
SMS

C(laliL;mlamliML)C(ssS;msamsiMS)

× C(lqlq′L;mlqmlq′ML)C(ssS;msqmsq′MS)

× (−1)L+lq+li

∞∑
k=0

Rk(aiqq
′)AkL(aiqq′), (48a)

where

τ = 1 (inequivalent electrons), (48b)

=
1√
2

(equivelent electrons). (48c)

Together with the exchange term,

vaiqq′ − vaiq′q = r(aiqq′)MLS(aiqq′), (49)

where

r(aiqq′) =
∑
LML

∑
SMS

C(laliL;mlamliML)C(ssS;msamsiMS)

× C(lqlq′L;mlqmlq′ML)C(ssS;msqmsq′MS), (50a)
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and

MLS(aiqq′) = τ(−1)L+lq+li

kmax∑
k=0

[
Rk(aiqq

′)AkL(aiqq′) + (−1)L+SRk(aiq
′q)AkL(aiq′q)

]
.

(50b)

We consider the average for the quantity Eq. (49) with respect to the initial and final holes

i and q, q′,
Ni

2(2li + 1)
×Nlqlq′

×
∑

mlimlqmlq′

|vaiqq′ − vaiq′q|2, (51)

where the constant Ni represents the number of holes in the subshell i. The first prefactor is

introduced to implement the average for the initial hole i. Let Nlq and Nlq′
be the occupation

number of the subshell q and q′. Then the second prefactor Nlqlq′
is given by

Nlqlq′
=

NlqNl′q

(4lq + 2)(4lq′ + 2)
, (inequivalent electrons) (52a)

=
Nlq(Nlq − 1)

(4lq + 2)(4lq + 1)
, (equivalent electrons). (52b)

The second prefactor is introduced to implement the average for the final holes q and q′.

The Auger rate is obtained by summing up Eq. (51) over all the possible states of the Auger

electron and multiplying 2π,

Γli,lqlq′ =
πNiNlqlq′

2li + 1

∑
lama

∑
mlimlqmlq′

|vaiqq′ − vaiq′q|2.

The summation over mlx (x = a, i, q, q′) can be done analytically. For given value of L and S,

the same MLS(aiqq′) appears totally (2L+ 1)(2S + 1) times. So, expanding the summation

of the inside of the absolute square, it looks like,

∑
mlamlimlqmlq′

∣∣∣∣∣∑
LML

∑
SMS

(· · · )

∣∣∣∣∣
2

=
∑

mlamlimlqmlq′

∣∣∣∣∣∣∣(c1 + c2 + · · · )︸ ︷︷ ︸
(2L+ 1)(2S + 1)

MLS + (c1′ + c2′ + · · · )︸ ︷︷ ︸
(2L′ + 1)(2S′ + 1)

ML′S′ + · · ·

∣∣∣∣∣∣∣
2

,

where ci represents the product of four Clebsch-Gordan coefficient for a certan combination

of ML and MS. The cross terms vanish after taking the summation over mlx (x = a, i, q, q′)

using the orthogonality of the Clebsch-Gordan coefficients. Therefore, we obtain∑
mlamlimlqmlq′

|vaiqq′ − vaiq′q|2 =
∑
LS

(2L+ 1)(2S + 1)|MLS(aiqq′)|2. (53)
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Finally, the Auger rate becomes

Γli,lqlq′ =
πNiNqq′

2li + 1

li+lq+lq′∑
la=0

lq+lq′∑
L=|lq−lq′ |

1∑
S=0

(2L+ 1)(2S + 1)|MLS(aiqq′)|2. (54)

B. relativistc case

In relativistic case, we introduce the relativistic energy corrections to all the non relativistc

subshells. We write down our basis functions in jj coupling scheme,

|nqlqjqmq;nq′lq′jq′mq′〉 =
∑
JM

C(jqjq′J ;mqmq′M)|jqjq′JM〉, (55a)

|nalajama;nilijimi〉 =
∑
J ′M ′

C(jajiJ
′;mamiM

′)|jajiJ ′M ′〉, (55b)

Using the Eq. (D.10),

vaiqq′ − vaiq′q = (−1)J+ji+jq′+la+li [jajijqjq′ ]r(aiqq
′)MJ(aiqq′), (56a)

where

r(aiqq′) =
∑
JM

C(jajiJ ;mamiM)C(jqjq′J ;mqmq′M), (56b)

MJ(aiqq′) = τ
kmax∑
k=0

[
Rk(aiqq

′)BkJ(aiqq′) + (−1)−JRk(aiq
′q)BkJ(aiq′q)

]
. (56c)

The symbol [ab . . . c] is defined in Eq. (D.2). We consider the average over the initial and

final holes in the subshell i and q, q′. Let Nq be the occupation number of the subshell q,

then let us define the constant njqjq′ ,

njqjq′ =
NjqNjq′

(2jq + 1)(2jq′ + 1)
(inequivalent electrons), (57a)

=
Njq(Njq − 1)

2jq(2jq + 1)
(equivalent electrons). (57b)

Then the average is calculated as

Ninjqjq′

2ji + 1

∑
mimqmq′

|vaiqq′ − vaiq′q|2

= NiNjqjq′
(2ja + 1)

∑
mimqmq′

|r(aiqq′)MJ(aiqq′)|2,
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where

Njqjq′
= NjqNjq′

(inequivalent electrons), (58a)

=
2jq + 1

2jq
Njq(Njq − 1) (equivalent electrons). (58b)

The Auger rate is obtained summing up this quantity over all the possible state of the Auger

electron with the prefactor 2π,

Γji,jqjq′ = 2πNiNjqjq′

∑
lajama

∑
mimqmq′

(2ja + 1)|r(aiqq′)MJ(aiqq′)|2. (59)

Recalling the discussion for non relativistic case, the summation over mx (x = a, i, q, q′) is

reduced to ∑
mamimqmq′

|r(aiqq′)MJ(aiqq′)|2

=
∑

mamimqmq′

∣∣∣∣∣∣
jq+jq′∑

J=|jq−jq′ |

J∑
M=−J

C(jajiJ ;mamimaM)C(jqjq′J ;mqmq′)MJ(aiqq′)

∣∣∣∣∣∣
2

=

jq+jq′∑
J=|jq−jq′ |

(2J + 1) |MJ(aiqq′)|2 . (60)

Using this result, we finally obtain,

Γji,jqjq′ = 2πNiNjqjq′

li+lq+lq′∑
la=0

la+
1
2∑

ja=|la− 1
2
|

jq+jq′∑
J=|jq−jq′ |

(2ja + 1)(2J + 1)|MJ(aiqq′)|2. (61)

IV. FLUORESCENCE RATE

Let us consider the process which the initial hole in the subshell q is filled by the electron

in the subshell q′ with a photon emittion of momentum ~kF into a solid angle dΩF . Let ~ε~kF ,λF

be the unit vector of the polarization of the photon being indexed with the quantity λF .

The fluorescence rate is defined by

Γqq′ =
α3

2π
(Iq − Iq′)3

∑
λF

∫
dΩF

∣∣∣〈ϕq|~ε∗~kF ,λF · ~r|ϕq′〉∣∣∣2 , (62)

where the summation running over λF indicates that the emitted photon is not polarized.

In the spherical basis representation, the polarization and dipole vector are represented by

ε~kF ,λF , =
3∑
i=1

εi~ei, and ~r =
3∑
i=1

ri~ei, (63a)
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where ~ei (i = 1, 2, 3) is the unit vector in spherical basis. The coefficients are given by

(ε0, ε±1) = (cos θλF , 0) (λF = 0), (63b)

=
(
0,∓e±iϕλF sin θλF

)
(λF = ±1), (63c)

and

r0 = rC10(Ω), (63d)

r±1 = rC1±1(Ω). (63e)

Here the function Ckµ is defined in Eq. (44b). Since both the polarization and dipole vector

are irreducible tensor operator of rank 1, the inner product of them is written as,

~ε∗~kF ,λF
· ~r =

1∑
µ=−1

(−1)µεµr−µ = r cos θFC10(Ω) (λF = 0) (63f)

= ±re±iϕF sin θFC1∓1(Ω) (λF = ±1). (63g)

Using this result,∑
λF

∫
dΩF

∣∣∣〈ϕq|~ε∗~kF ,λF · ~r|ϕq′〉∣∣∣2 =
8π

3

1∑
µ=−1

|〈ϕq|rC1µ|ϕq′〉|2 . (64)

Therefore, the rate is reduced to

Γqq′ =
4

3
α3(Iq − Iq′)3

1∑
µ=−1

|〈ϕq|rC1µ|ϕq′〉|2 . (65)

A. non relativistic case

For µ = 0,±1, the matrix elements are evaluated utilizing the Wigner-Eckart theorem,

〈ϕq|rC1µ|ϕq′〉 = 〈nqlqmlqsmsq|rC1µ|nq′lq′mlq′smsq′〉

= 〈u(0)
nqlq
|r|u(0)

nq′ lq′
〉〈lqmlqsmsq|C1µ|lq′mlq′smsq′〉

= δmsqmsq′ 〈u
(0)
nqlq
|r|u(0)

nq′ lq′
〉C(lq′1lq;mlq′µmlq)√

2lq + 1
〈lq||C1||lq′〉.

(66)

Hence, the selection rules are given by

lq = lq′ ± 1, (67a)

mlq = mlq′ , mlq′ ± 1. (67b)

12



Substituting Eq. (66) into (64), and using

〈lq||C1||lq′〉 = ∓
√
l> (lq′ = lq ± 1), (68)

we obtain

Γqq′ = δmsq′msq
4

3
α3(Iq − Iq′)3

∣∣∣〈u(0)
nqlq
|r|u(0)

nq′ lq′
〉
∣∣∣2 l>

2lq + 1

1∑
µ=−1

C2(lq′1lq;mlq′µmlq) (69)

Averaging out this quantity for the initial and final state q′ and q,

1

2(2lq + 1)

∑
mlqmsq

1

2(2lq′ + 1)

∑
mlq′msq′

Γqq′

=
2

3
α3(Iq − Iq′)3 l>

2lq′ + 1

1

2lq + 1

∣∣∣〈u(0)
nqlq
|r|u(0)

nq′ lq′
〉
∣∣∣2 . (70)

Let NH
lq

and Nlq′
be the number of the holes and electrons in the subshell q and q′. Multi-

plying these constants to the above result, we redefine the fluorescence rate,

Γqq′ =
2

3
α3(Iq − Iq′)3 l>

2lq′ + 1

NH
lq
Nlq′

2lq + 1

∣∣∣〈u(0)
nqlq
|r|u(0)

nq′ lq′
〉
∣∣∣2 . (71)

B. relativistic case

As well as non relativistic case,

〈ϕq|rC1µ|ϕq′〉 = 〈nqlqjqmq|rC1µ|nq′lq′jq′mq′〉

= 〈u(0)
nqlq
|r|u(0)

nq′ lq′
〉〈lqjqmq|C1|lq′jq′mq′〉

= 〈u(0)
nqlq
|r|u(0)

nq′ lq′
〉C(jq′1jq;mq′µmq)

〈lqjq||C1||lq′jq′〉√
2jq + 1

= 〈u(0)
nqlq
|r|u(0)

nq′ lq′
〉C(jq′1jq;mq′µmq)

× (−1)jq′+lq+s+1
√

2jq′ + 1

 lq′ s jq′

jq 1 lq

 〈lq||C1||lq′〉. (72)

Therefore, the selection rules are given by

jq = jq′ , jq′ ± 1, (73a)

lq = lq′ ± 1, (73b)

mq = mq′ , mq′ ± 1. (73c)
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Then we obtain

Γqq′ =
4

3
α3(Iq − Iq′)3l>(2jq′ + 1)

∣∣∣〈u(0)
nqlq
|r|u(0)

nq′ lq′
〉
∣∣∣2
 lq′ s jq′

jq 1 lq


2

×
1∑

µ=−1

C2(jq′1jq;mq′µmq) (74)

Averaging out this quantity for the initial and final state q′ and q,

1

2jq + 1

∑
mq

1

2jq′ + 1

∑
mq′

Γqq′ =
4

3
α3(Iq − Iq′)3l>

 lq′ s jq′

jq 1 lq


2 ∣∣∣〈u(0)

nqlq
|r|u(0)

nq′ lq′
〉
∣∣∣2 . (75)

Let Njq′
and NH

jq be the number of the electrons and holes in the subshell q′ and q. Multi-

plying these constants to the above result, we redefine fluorescence rate,

Γqq′ =
4

3
α3(Iq − Iq′)3l>Njq′

NH
jq

 lq′ s jq′

jq 1 lq


2 ∣∣∣〈u(0)

nqlq
|r|u(0)

nq′ lq′
〉
∣∣∣2 . (76)

It is easy to convert this result into the one which we obtained in non relativistic case.

To this end, let us switch off the relativistic energy corrections. Summing up the matrix

element Eq. (74) with respect to mq′ and mq,

∑
mq′mq

Γqq′ =
4

3
α3(Iq − Iq′)3l>

∣∣∣〈u(0)
nqlq
|r|u(0)

nq′ lq′
〉
∣∣∣2 (2jq′ + 1)(2jq + 1)

 lq′ s jq′

jq 1 lq


2

.

We further sum up this quantity over jq′ and jq. Using the orthogonality of the 6j symbol

given by Eq. (3) in the Sec. 9. 8. in VMK,∑
jq′jq

∑
mq′mq′

Γqq′ =
4

3
α3(Iq − Iq′)3l>

∣∣∣〈u(0)
nqlq
|r|u(0)

nq′ lq′
〉
∣∣∣2 1

2lq + 1

∑
jq

(2jq + 1)

=
8

3
α3(Iq − Iq′)3l>

∣∣∣〈u(0)
nqlq
|r|u(0)

nq′ lq′
〉
∣∣∣2 .

Multiplying the prefactor,
NH
lq

2(2lq + 1)

Nlq

2(2lq′ + 1)

to the above result, we obtain the fluorescence rate in non relativistic case.

Finally, we point out that the current relativistic approach is inappropriate for heavy

atoms. Let us consider the radiative transition from 2p to 1s for 1s−1 configuration. We
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obtain the following quantities:

lq = 0, and lq′ = 1,

l> = max[lq′ , lq] = lq′ = 1.

The rate in non relativistic case is then reduced to

Γ1s2p =
4

3
α3(I1s − I2p)3|d(2p→ 1s)|2,

where

d(2p→ 1s) = 〈u(0)
1s |r|u

(0)
2p 〉.

In relativistic case, with the further use of

jq =
1

2
, and jq′ =

1

2
,
3

2
, lq′ s jq′

jq 1 lq


2

=
1

(2lq′ + 1)(2s+ 1)
=

1

6
,

we obtain the partial widths,

Γ1s1/22pjq′
=

2

9
α3(I1s1/2 − I2pjq′ )

3Njq′
|d(2p→ 1s)|2.

The ratio relativistic to non relativistic case is given by

Γ1s1/22p1/2
+ Γ1s1/22p3/2

Γ1s2p

=
(I1s1/2 − I2p1/2

)3 + 2(I1s1/2 − I2p1/2
)3

3(I1s − I2p)3
.

For the case of Uuo atom of Z = 118, the energy of x-ray photon being emitted in non rela-

tivistic case is I1s−I2p = 139666.82 (eV). For relativistic case, I1s1/2−I2p1/2
= 164690.11 (eV)

and I1s1/2 − I2p3/2
= 172637.59 (eV). These numerical values give us the above ratio ≈ 1.81.

The numerical results for the radiative widths are given by Γ1s2p = 8.03 (a.u.) in non rel-

ativistic case, and Γ1s1/22p1/2
+ Γ1s1/22p3/2

= 4.39 + 10.1 = 14.5 (a.u.) in relativistic case,

respectively, and the ratio of them are calculated as 14.5/8.03 = 1.81, which is consistent

with the above discussions. Since the non relativistic formula somehow gives us surpris-

ingly accurate values even for heavy atoms, the current relativistic approach fails for heavy

atoms. We need to introduce the corrections for the orbital wave functions to obtain the

dipole matrix element of better quality.
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V. BOUND-BOUND TRANSITIONS

The exciation cross section within dipole approximation for the transition from the initial

orbital i to final orbital f is given by

σp(i→ f, ωin) = 4πα2ωin|〈ϕf |z|ϕi〉|2δ(εf − εi − ωin). (77)

Here the line widths of i and f are approximated to be delta function since we assume that

these are much narrower than a bandwidth of pulse. For instance, the bandwidth of pulses

at 5.5 keV in SACLA experiment was considered to be 1% of the photon energy i.e. ∼ 50

eV. Thie photon energy opens photo ionization for 2s shubshell. The width of Xe (2s−1)

configuration is about 3.6 eV, which is much smaller than the band width of pulse. The

dipole operator z = r cos θ = rC10 is irreducible tensor operator of rank 1, so we employ the

Wigner-Eckart theorem to evaluate the matrix element.

A. Non relativistic case

The Wigner-Ecckart theorem gives us

〈ϕf |z|ϕi〉 = 〈n′l′m′lm′s|z|nlmlms〉

= 〈n′l′|r|nl〉δm′sms〈l
′m′l|C10|lml〉

= 〈n′l′|r|nl〉δm′smsC(l1l′;ml0m
′
l)
〈l′||C10||l〉√

2l′ + 1

= ±〈n′l′|r|nl〉δm′sms

√
l>

2l′ + 1
C(l1l′;ml0m

′
l) (78)

Averaging out matrix element squared with respect to the magnetic and spin quantum

numbers of i and f ,

1

2(2l′ + 1)

∑
m′lm

′
s

1

2(2l + 1)

∑
mlms

|〈ϕf |z|ϕi〉|2 =
l>|〈n′l′|r|nl〉|2

2(2l′ + 1)2(2l + 1)

∑
m′lml

C2(l1l′;m0m′)

=
1

3

l>|〈n′l′|r|nl〉|2

2(2l′ + 1)(2l + 1)
. (79)

Let Nl and NH
l′ be the number of occupations and holes in the initial and final orbitals. We

redefine the cross section, Eq. (77), by replacing the matrix squared to the above result, and

multiplying Nl and Nl′ ,

σp(i→ f, ωin) =
2

3
πα2NlN

H
l′

l>|〈n′l′|r|nl〉|2

(2l′ + 1)(2l + 1)
δ(εf − εi − ωin). (80)
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B. Relativistic case

The Wigner-Eckart theorem in relativistic case is

〈ϕf |z|ϕi〉 = 〈n′l′j′m′|rC10|nljm〉

= 〈n′l′|r|nl〉〈l′j′m′|C10|ljm〉

= 〈n′l′|r|nl〉C(j1j′;m0m′)√
2j′ + 1

〈l′j′||C10||lj〉

= 〈n′l′|r|nl〉C(j1j′;m0m′)

× (−1)j+l
′+s+1

√
2j + 1

 l s j

j′ 1 l′

 〈l′||C10||l〉

= ∓(−1)j+l
′+s+1

√
l>(2j + 1)〈n′l′|r|nl〉C(j1j′;m0m′)

 l s j

j′ 1 l′

 . (81)

Averaging the matrix element squared with respect to m and m′,

1

2j′ + 1

∑
m′

1

2j + 1

∑
m

|〈ϕf |z|ϕi〉|2

=
l>

2j′ + 1
|〈n′l′|r|nl〉|2

 l s j

j′ 1 l′


2∑
m′m

C2(j1j′;m0m′)

=
l>
3
|〈n′l′|r|nl〉|2

 l s j

j′ 1 l′


2

(82)

Let Nj and NH
j′ be the number of occupations and holes in the initial and final orbitals. As

well as non-relativistic case, we obtain

σp(i→ f, ωin) =
4

3
πα2ωinl>NjN

H
j′ 〈n′l′|r|nl〉|2

 l s j

j′ 1 l′


2

δ(εf + εi − ωin) (83)

C. Convolution with pulse

Assuming that a pulse has Gaussian profile in time. Then its energy distribution is given

by

f(E) =
1

σ
√

2π
e−

(E−ω)2

2σ2 . (84)
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Convoluting the cross section with this energy profile,∫ ∞
−∞

σp(i→ f, ωin)f(εf )dεf

=
2

3
πα2NlN

H
l′

l>|〈n′l′|r|nl〉|2

(2l′ + 1)(2l + 1)
× f(εi) (non relativistic), (85a)

=
4

3
πα2ωinl>NjN

H
j′ 〈n′l′|r|nl〉|2

 l s j

j′ 1 l′


2

× f(εi) (relativistic). (85b)

VI. SHAKE PROCESS

A. Orbital overlap

A process accompanying a change of an electric configuration of atom from C to C ′ can

trigger sudden change of the atomic Hamiltonian. Let i(C) and i(C
′) be the orbital i belonging

to the atomic Hamiltonian H(C) and H(C′) for the configuration C and C ′, respectively. Since

the wave function of the orbital i(C) is not the eigen function of H(C′), the electrons in i(C)

before the decay relax into the orbital i(C
′). In this relaxation process, there is a finite

probability that additional elctrons are ionized. This is called shake-off branching process.

The partial shake-off branching ratio γi for the electrons in the orbital i is given by

γi = Ni(C′)

(
1−

∣∣∣〈i(C′)|i(C)〉
∣∣∣2 ,) (86a)

Let Γ(C → C ′) be the rate of one of decay channels which makes the transition from C to

C ′. Then the corresponding shake-off branching rate is

γiΓ(C → C ′). (86b)

When an additional electron is ionized by shake-off, the kinetic energy of the electron ε
(C)
a

being ionized by the decay process from C to C ′ is then substracted by the binding energy

of the electron in i(C
′),

ε(C)
a − (−ε(C′)

i ). (86c)

If the above qunatity is negative, the electron is not ionzied by shake-off process from the

orbital i(C
′). Summing up the partial shake-off branching ratio over all the orbitals, we

obtain the total shake-off branching ratio γ,

γ =
∑
i

γi. (86d)
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The rate which does not accompany the shake-off processes after the decay from C to C ′ is

given by

(1− γ) Γ(C → C ′). (86e)

B. Determinant overlap

N -body wave function Φ(~x1, ~x2, . . . , ~xN) is written as

Φ(~x1, ~x2, . . . , ~xN) =
√
N !ÂΦH(~x1, ~x2, . . . , ~xN), (87)

where the function ΦH(~x1, ~x2, . . . , ~xN) is the Hartee product given by

ΦH(~x1, ~x2, . . . , ~xN) = φ1(~x1)φ2(~x2) . . . φN(~xN). (88)

The operator A is the antisymmetrizer defined by,

Â =
1

N !

∑
P

(−1)pP̂ , (89a)

where P̂ is the permutation operator. The symbol p represents the parity of a permutation.

We define the parity of the Hartree Product Eq. (88) as +1, and the others +1 or −1 either

the number of permutations are even or odd. The summation in Eq. (87) runs over all the

possible permutations multiplied by the parity. The important properties of Â are

Â2Φ(~x1, ~x2, . . . , ~xN) = ÂΦ(~x1, ~x2, . . . , ~xN). (89b)

Â† = A. (89c)
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Using them, the derterminant overlap is thus given by

〈Φ′|Φ〉 = N !

∫
Â∗ [φ′1(~x1)φ

′
2(~x2) . . . φ

′(~xN)] Â [φ1(~x1)φ2(~x2) . . . φ(~xN)] d~x

= N !

∫
φ′1(~x1)φ

′
2(~x2) . . . φ

′(~xN)Â2 [φ1(~x1)φ2(~x2) . . . φ(~xN)] d~x

= N !

∫
φ′1(~x1)φ

′
2(~x2) . . . φ

′(~xN)Â [φ1(~x1)φ2(~x2) . . . φ(~xN)] d~x

=

∫
φ′1(~x1)φ

′
2(~x2) . . . φ

′(~xN)
∑
P

(−1)pP̂ [φ1(~x1)φ2(~x2) . . . φ(~xN)] d~x

=
∑

σ1,...,σN

(−1)p〈φ′1|φσ1〉〈φ′2|φσ2〉 . . . 〈φ′N |φσN 〉

= det


〈φ′1|φ1〉 〈φ′1|φ2〉 · · · 〈φ′1|φN〉

〈φ′2|φ1〉 〈φ′2|φ2〉 · · · 〈φ′2|φN〉
...

...
...

〈φ′N |φ1〉 〈φ′N |φ2〉 · · · 〈φ′N |φN〉

 . (90)

The summation on the last line but one runs over all the possible combinations of σ1, . . . , σN .

The determinat overlap fails in relativistic case. For instance, for the case of Ne atom, the

matrix Eq. (90) is written as

〈Φ′|Φ〉 = det


〈φ′1s|φ1s〉 〈φ′1s|φ2s〉 0 0

〈φ′2s|φ1s〉 〈φ′2s|φ2s〉 0 0

0 0 〈φ′2p−|φ2p−〉 〈φ′2p−|φ2p+〉

0 0 〈φ′2p+
|φ2p+〉 〈φ′2p+

|φ2p+〉

 . (91)

Since 〈φ′2p−|φ2p−〉 = 〈φ′2p− |φ2p+〉 = 〈φ′2p+
|φ2p+〉 = 〈φ′2p+

|φ2p+〉, the rank of the matrix is 3.

So, the determinant is 0.

C. Thomas model (adiabatic approximation)

The original idea is found in T. D. Thomas, PRL 52, 417 (1984). Let H(t) be the N -body

time-dependent Hamiltonian as

H(t) =
N∑
i=1

(
−1

2
∇2
i −

Z(t)

ri

)
+
∑
i 6=j

1

rij
, (92)

where

Z(t) = Z + q(t). (93a)
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The function q(t) is given by the error function,

q(t) =
1√
2πt0

∫ t

−∞
e
− t′2

2t20 dt′. (93b)

The important properties of q(t) are

lim
t→−∞

= 0 and lim
t→∞

q(t) = 1. (93c)

The function q(t) models the photo ionization in which the nuclar charge Z at t = −∞

increases to Z + 1 as t = ∞ by the leave of the photo electron of the time scale t0 from a

parent ion.

The solution of the TDSE

i
∂

∂t
|Ψ(t)〉 = H(t)|Ψ(t)〉 (94)

is expanded into

|Ψ(t)〉 = eiχ(t)

[
c0(t)|Φ0(t)〉e−i

R t
−∞ E0(t′)dt′ +

∑
i,r

cri (t)|Φr
i (t)〉e−i

R t
−∞ Eri (t

′)dt′

+
∑
i

∫ ∞
0

cEi (t′)|ΦE
i (t)〉e−iEtdE

]
. (95)

The function |Φ0(t)〉 represents the ground state configulation, |Φr
i 〉 the configurations of

shake-up states, |ΦE
i (t) those with a shake-off electron. These are the eigen function of the

Hamiltonian H(t),

H(t)|Φ0(t)〉 = E0|Φ0(t)〉, (96a)

H(t)|Φr
i (t)〉 = Er

i |Φr
i (t)〉, (96b)

H(t)|ΦE
i (t)〉 = E|ΦE

i (t)〉. (96c)

The function |ΦE
i (t)〉 is energy normalized,

〈ΦE
i |ΦE′

j 〉 = δijδ(E − E ′). (96d)

In the case E = E ′ but i 6= j, the right hand side of the above equation vanishes. It is found

that ∂H
∂t

= −
∑

i
q′(t)
ri

is a one-electron operator. Using the Hellman-Feynman theorem, the

matrix elements with repsect to determinants reduce to these with respect to orbitals,

〈Φr
i (t)|

∂H

∂t
|Φr

i (t)〉 =
dEr

i

dt
, (97a)

〈Φ0(t)|
∂

∂t
|Φr

i (t)〉 =
〈Φ0(t)|∂H∂t |Φ

r
i (t)〉

Er
i (t)− E0(t)

= −
〈i(t)|1

r
|r(t)〉

Er
i (t)− E0(t)

q′(t), (97b)

〈Φs
j(t)|

∂

∂t
|Φr

i (t)〉 =
〈Φs

j(t)|∂H∂t |Φ
r
i (t)〉

Er
i (t)− Es

j (t)
= 0 (i 6= j, r 6= s). (97c)
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The algebra in the Hartree-Fock approximation is given in the chapter two in A. Szabo and

N. S. Ostlund, Modern Quantum Chemistry. Let χ(t) be

χ(t) = i

∫ t

−∞
〈Φ0(t

′)| ∂
∂t′
|Φ0(t

′)〉dt′, (98)

the equation for the coefficients are thus given by

dc0
dt

=
∑
i,r

〈i(t)|1
r
|r(t)〉

Er
i (t)− E0(t)

q′(t)cri (t)e
−i

R t
−∞[Eri (t′)−E0(t′)]dt′

+
∑
i

∫ ∞
0

〈i(t)|1
r
|E〉

E − E0(t)
q′(t)cEi (t)e−iEt+i

R t
−∞ E0(t′)dt′dE, (99a)

i
dcsj
dt

=

(
dχ

dt
− i

dEs
j

dt

)
csj(t) + i

〈s(t)|1
r
|j(t)〉

Es
j (t)− E0(t)

q′(t)c0(t)e
−i

R t
−∞[E0(t′)−Esj (t′)]dt′ , (99b)

dcE
′

j

dt
=
〈E ′|1

r
|j(t)〉

EE′
j − E0(t)

q′(t)c0(t)e
−i

R t
−∞ E0(t′)dt′+iE′t. (99c)

In the last equation of the above, the transitions between two differnt shake-off configurations

are ignored. The initial condition of Eqs. (99) is,

c0(−∞) = 1, and cri (−∞) = cEi (−∞) = 0. (100)

Eqs. (99) can be solved iteratively. Assuming the zeroth order solution the same as the

initial condition,

c
(0)
0 (t) = 1, and c

r(0)
i (t) = c

E(0)
i (t) = 0, (101)

the first order solution is given by

c
(1)
0 (t) = 1, (102a)

c
s(1)
j (t) =

µj→s
∆Ej→s,0

e−
∆E2

j→s,0
2

t20 . (102b)

A. SPIN-ORBIT TERM H ′SO

Here, we leave some technical details to evaluate the matirx element of the spin orbit and

Darwin terms avoiding the Coulomb singularity.

Inl = 〈u(0)
nl |

1

r

dV

dr
|u(0)
nl 〉 =

1

r
V
[
u

(0)
nl

]2∣∣∣∣∞
0

−
∫ ∞

0

V (r)
d

dr

{
1

r

[
u

(0)
nl (r)

]2}
dr

= −Anl +

∫ ∞
0

V

{
1

r2

[
u

(0)
nl

]2
− 2

r
u

(0)
nl

du
(0)
nl

dr

}
dr, (A.1)
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where

Anl = lim
r→0

{
1

r
V (r)

[
u

(0)
nl (r)

]2}
. (A.2)

Near the origin, the potential V (r) becomes hydrogenic i.e. −Z/r. Then the wave function

u
(0)
nl behaves ∼ cnlr

l+1. Therefore,

Anl = lim
r→0

[
1

r
×
(
−Z
r

)
× (cnlr

l+1)2

]
= − lim

r→0

[
Zc2nlr

2l
]

=

 −Zc2ns (l = 0),

0 (l 6= 0).
(A.3)

For s state, Ans has a finite value. However, the energy correction for s state due to the

spin-orbit coupling is zero. So, it is found that Anl does not play a role in spin-orbit coupling.

B. DARWIN TERM H ′dar

Using the results of the spin-orbit term Eq. (A.1),

〈u(0)
nl |H

′
dar|u

(0)
nl 〉 =

∫ ∞
0

u
(0)
nl

r

dV

dr

∂

∂r

(
u

(0)
nl

r

)
r2dr

=

∫ ∞
0

(
−1

r

dV

dr

[
u

(0)
nl

]2
+
dV

dr
u

(0)
nl

du
(0)
nl

dr

)
dr

= −Inl +

∫ ∞
0

dV

dr
u

(0)
nl

du
(0)
nl

dr
dr

= −Inl + V u
(0)
nl

du
(0)
nl

dr

∣∣∣∣∣
∞

0

−
∫ ∞

0

V


(
du

(0)
nl

dr

)2

+ u
(0)
nl

d2u
(0)
nl

dr2

 dr

= −Inl −Bnl −
∫ ∞

0

V


(
du

(0)
nl

dr

)2

+ u
(0)
nl

d2u
(0)
nl

dr2

 dr, (B.1)
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where

Bnl = lim
r→0

[
V (r)u

(0)
nl (r)

du
(0)
nl (r)

dr

]

= lim
r→0

[
−Z
r
× cnlrl+1 × (l + 1)cnlr

l

]
= lim

r→0

[
−Z(l + 1)c2nlr

2l
]

=

 −Zc2ns (l = 0),

0 (l 6= 0).
(B.2)

It is thus found that Bnl vanishes for nonzero l states. For s state, it has a finite value, but

it cancels out Ans of Ins. So, the value Ans and Bns does not contribute to the Darwin term.

So, the Darwin term becomes,

〈u(0)
nl |H

′
dar|u

(0)
nl 〉 =

∫ ∞
0

V

− 1

r2

[
u

(0)
nl

]2
+

2

r
u

(0)
nl

du
(0)
nl

dr
−

(
du

(0)
nl

dr

)2

− u(0)
nl

d2u
(0)
nl

dr2

 dr

(B.3)

The 2nd derivative is further eliminated using the Schrödinger equation.

C. AUGER MATRIX ELEMENT IN LSJM SCHEME

Regarding the quantity T0(k) = T0(k) · 1, using the Wigner-Eckart theorem,

〈laliL′S ′J ′M ′| 1

r12

|lqlq′LSJM〉

= δJ ′JδM ′M(−1)J+L+S′
∞∑
k=0

Rk(aiqq
′)

 L′ L 0

S S ′ J

 〈L′||T0(k)||L〉〈S ′||1||S〉

= δJ ′JδM ′MδS′S(−1)J+L+S′
√

2S ′ + 1
∞∑
k=0

Rk(aiqq
′)

 L′ L 0

S S ′ J

 〈L′||T0(k)||L〉

= δJ ′JδM ′MδS′SδL′L(−1)2(J+L+S)

∞∑
k=0

Rk(aiqq
′)
〈L′||T0(k)||L〉√

2L′ + 1
. (C.1)

Using the Wigner-Eckart theorem,

〈L′ML′ |T0(k)|LML〉 =
C(L′0L;ML′0ML)√

2L′ + 1
〈L′||T0(k)||L〉 =

δL′LδML′ML√
2L′ + 1

〈L′||T0(k)||L〉. (C.2)
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Regarding the quantity T0(k) as a scalar product of irreducible tensor operator of rank k,

the left hand side is written also as

〈L′ML′|T0(k)|LML〉 = δL′LδML′ML
(−1)L+lq+li

 la lq k

lq′ li L

 〈la||Ck||lq〉〈li||Ck||lq′〉. (C.3)

Threfore the reduced matrix element is given by

〈L′ML′||T0(k)||LML〉√
2L′ + 1

= δL′LδML′ML
(−1)L+Lq+li

 la lq k

lq′ li L

 〈la||Ck||lq〉〈li||Ck||lq′〉. (C.4)

Using this result, Eq. (C.1) reduces to

〈laliL′S ′J ′M ′| 1

r12

|lqlq′LSJM〉 = δJ ′JδM ′MδS′SδL′LδML′ML

× (−1)L+lq+l1

∞∑
k=0

Rk(aiqq
′)AkL(aiqq′), (C.5)

where

AkL =

 la lq k

lq′ li L

 〈la||Ck||lq〉〈li||Ck||lq′〉. (C.6)

The selection rules give us the cut-off for the summation over k. These are found in 6j

symbol and the reduced matrix elements in the function AkL. For the direct term vaiqq′ ,

|lq − k| ≤ la ≤ lq + k, (C.7a)

|l′q − li| ≤ k ≤ lq′ + li, (C.7b)

la + k + lq = even, (C.7c)

li + k + lq′ = even. (C.7d)

Substituting the second equation into the first, we obtain

la ≤ li + lq + lq′ . (C.8)

Rewriting Eq. (C.7a),

|la − lq| ≤ k ≤ la + lq, (C.9)

and summing to Eq. (C.7b) and using Eq. (C.8),

k ≤ 1

2
(li + lq + lq′ + lq) ≤ li + lq + lq′ = kmax. (C.10)

Repeating this procedure for the exchange term, we obtain the same results Eqs (C.8) and

(C.10).
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D. AUGER MATRIX ELEMENT IN jj COUPLING SCHEME

The direct term is evaluated as (VMK 13. 2. 1 Eq. (5))

〈jajiJ ′M ′| 1

r12

|jqjq′JM〉

= δJ ′JδM ′M(−1)J+jq+ji

∞∑
k=0

Rk(aiqq
′)

 ja jq k

jq′ ji J

 〈ja||Ck||jq〉〈ji||Ck||jq′〉
= δJ ′JδM ′M(−1)J+jq+ji

∞∑
k=0

Rk(aiqq
′)

 ja jq k

jq′ ji J


× (−1)jq+la+s+k

√
(2ja + 1)(2jq + 1)

 lq s jq

ja k la

 〈la||Ck||lq〉
× (−1)jq′+li+s+k

√
(2ji + 1)(2jq′ + 1)

 lq′ s jq′

ji k li

 〈li||Ck||lq′〉
= δJ ′JδM ′M(−1)J+ji+jq′+la+li [jajijqjq′ ]

∞∑
k=0

Rk(aiqq
′)BkJ(aiqq′), (D.1)

where

[ab . . . c] =
√

(2a+ 1)(2b+ 1) . . . (2c+ 1), (D.2)

and

BkJ(aiqq′) =

 ja jq k

jq′ ji J


 lq s jq

ja k la


 lq′ s jq′

ji k li

 〈la||Ck||lq〉〈li||Ck||lq′〉. (D.3)

The radial integral Rk(aiqq
′) is defined in Eq. (47). Writing down the selectrion rules from

the three 6j symbols and two reduced matrix elements in Eq. (D.3),

|ja − jq| ≤ k ≤ ja + jq, (D.4a)

|jq′ − ji| ≤ k ≤ jq′ + ji, (D.4b)

|lq − la| ≤ k ≤ lq + la, (D.4c)

|lq′ − li| ≤ k ≤ lq′ + li, (D.4d)

la + k + lq = even, (D.4e)

li + k + lq′ = even. (D.4f)

Rewriting the triangle relation for Eq. (D.4a), and using Eq. (D.4b),

|jq − k| ≤ ja ≤ jq + k ≤ jq + jq′ + ji. (D.5)
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Summing up Eqs. (D.4a) and (D.4b), and using Eq. (D.5)

k ≤ 1

2
(ja + jq + jq′ + ji) ≤ jq + jq′ + ji ≤ lq + lq′ + li +

3

2
(D.6)

Rewriting the triangle relation for Eq. (D.4c), and using Eq. (D.4d),

|lq − k| ≤ la ≤ lq + k ≤ li + lq + lq′ . (D.7)

Summing up Eqs. (D.4c) and (D.4d), and using Eq. (D.7),

k ≤ lq + lq′ + li. (D.8)

Having Eqs. (D.6) and (D.8), the upper boundary of k is

kmax = lq + lq′ + li. (D.9)

Using Eqs. (D.9), the matrix element Eq. (D.1) becomes

〈jajiJ ′M ′| 1

r12

|jqjq′JM〉 = δJ ′JδM ′M(−1)J+ji+jq′+la+li [jajijqjq′ ]
kmax∑
k=0

Rk(aiqq
′)BkJ(aiqq′).

Note that writing down the selection rules for the exchange term, one finds that

Eqs. (D.5), (D.7) and (D.9) can also be applied to the exchange term. We further mul-

tiply the constant τ to this quantity, which keeps the normalization of jj coupled basis, and

redefine the matrix element,

〈jajiJ ′M ′| 1

r12

|jqjq′JM〉 = δJ ′JδM ′Mτ(−1)J+ji+jq′+la+li [jajijqjq′ ]
kmax∑
k=0

Rk(aiqq
′)BkJ(aiqq′).

(D.10)

The constant τ is the normalization factor for anti symmetrized wave functions,

τ = 1 (inequivalent electrons), (D.11a)

=
1√
2

(eqivalent electrons). (D.11b)

E. COMPARISON BETWEEN LSJM AND jj COUPLING SCHEME

Comparing the Auger rate in LSJM scheme, Eq. (54), and the one in jj coupling scheme,

Eq. (61), we notice that the summation over la of the Auger electron is common. So, we
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only consider the sum over LS in LSJM scheme, and the one over J and ja in jj copling

scheme, and compare them. Let us consider the case

lq′ = 0.

Note that this case still contains the Coster-Kronig transitions, and the 6j symbol becomes

very simple. In this case, using Eq. (1) in VMK in 9. 5. 1, the function AkL Eq. (C.6) reduces

to

AkL(aiqq′) = (−1)la+lq+li
δlqLδkli√

(2lq + 1)(2k + 1)
〈la||Ck||lq〉〈li||Ck||0〉,

AkL(aiq′q) = (−1)la+lq+li
δlakδlqL√

(2la + 1)(2lq + 1)
〈la||Ck||0〉〈li||Ck||lq〉.

Then the function MLS Eq. (50b) becomes

MLS(aiqq′) = τ(−1)L+lq+li

kmax∑
k=0

[ Rk(aiqq
′)

δlqLδkli√
(2lq + 1)(2k + 1)

〈la||Ck||lq〉〈li||Ck||0〉

+(−1)L+SRk(aiq
′q)

δlakδlqL√
(2la + 1)(2lq + 1)

〈la||Ck||0〉〈li||Ck||lq〉

]
.

= δlqL
τ(−1)L+lq+li√

2lq + 1

[
Rli(aiqq

′)√
2li + 1

〈la||Cli ||lq〉〈li||Cli ||0〉

+ (−1)L+SRla(aiq
′q)√

2la + 1
〈la||Cla||0〉〈li||Cla ||lq〉

]
. (E.1)

Threfore, ∑
LS

(2S + 1)(2L+ 1)|MLS(aiqq′)|2

= τ 2
∑
S

(2S + 1)

[
Rli(aiqq

′)√
2li + 1

〈la||Cli ||lq〉〈li||Cli||0〉

+ (−1)lq+S
Rla(aiq

′q)√
2la + 1

〈la||Cla||0〉〈li||Clq ||lq〉
]2

= 4τ 2

[(
Rli(aiqq

′)√
2li + 1

)2

〈la||Cli ||lq〉2〈li||Cli||0〉2

− (−1)lq
Rli(aiqq

′)√
2li + 1

Rla(aiq
′q)√

2la + 1
〈la||Cli ||lq〉〈li||Cli||0〉〈la||Cla ||0〉〈li||Clq ||lq〉

+

(
Rla(aiq

′q)√
2la + 1

)2

〈la||Cla ||0〉2〈li||Clq ||lq〉2
]
. (E.2)
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For jj coupling scheme, we switch off the relativistic energy corrections. As well as the case

of LSJM scheme, substitutinbg lq′ = 0 and jq′ = 1/2 to the function BkJ , Eq. (D.3),

BkJ(aiqq′) = δkli
(−1)s+k+ji√

2(2k + 1)

 ja jq k

1
2
ji J


 lq s jq

ja k la

 〈la||Ck||lq〉〈li||Ck||0〉,
BkJ(aiq′q) = δkla

(−1)s+k+ja√
2(2k + 1)

 ja
1
2
k

jq ji J


 lq s jq

ji k li

 〈la||Ck||0〉〈li||Ck||lq〉.
The function MJ(aiqq′), Eq. (56c), is reduced to

MJ(aiqq′) =
τ(−1)s√

2
(−1)li+ji

Rli(aiqq
′)√

2li + 1

 ja jq li
1
2
ji J


 lq s jq

ja li la

 〈la||Cli||lq〉〈li||Cli ||0〉
+ (−1)la+ja−li−ji−J

Rla(aiq
′q)√

2la + 1

 ja
1
2
la

jq ji J


 lq s jq

ji la li

 〈la||Cla||0〉〈li||Cla ||lq〉
 .

Threfore, using Eqs. (3) and (4) in VMK 9. 8.∑
Jja

(2J + 1)(2ja + 1)|MJ(aiqq′)|2

=
τ 2

2

∑
ja

(2ja + 1)

(Rli(aiqq
′)

2li + 1

)2

 lq s jq

ja li la


2

〈la||Cli ||lq〉2〈li||Cli ||0〉2

+ 2(−1)ja−ji
Rli(aiqq

′)√
2li + 1

Rla(aiq
′q)√

2la + 1

 ja
1
2
la

ji jq li


 lq s jq

ja li la


 lq s jq

ji la li


× 〈la||Cli ||lq〉〈li||Cli ||0〉〈la||Cla||0〉〈li||Cla||lq〉

+

(
Rla(aiq

′q)

2la + 1

)2

 lq s jq

ji la li


2

〈la||Cla||0〉2〈li||Cla ||lq〉2


=
τ 2

2

( Rli(aiqq
′)

(2li + 1)
√

2lq + 1

)2

〈la||Cli ||lq〉2〈li||Cli ||0〉2

− 2(−1)−lq
Rli(aiqq

′)√
2li + 1

Rla(aiq
′q)√

2la + 1

 1
2
jq lq

la li ji


 lq s jq

ji la li


× 〈la||Cli ||lq〉〈li||Cli ||0〉〈la||Cla||0〉〈li||Cla||lq〉

+
2[Rla(aiq

′q)]2

2la + 1

 lq s jq

ji la li


2

〈la||Cla ||0〉2〈li||Cla||lq〉2
 .
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Now let us recover the rate in LSJM scheme starting from this formula. For a given value

of li, we have to take into account two values of ji± = |li ± 1
2
|. For the each value of ji

bears totally 2ji + 1 degeneracies. The same is also applied to jq and jq′ . Multiplying

(2ji + 1)(2jq + 1)(2jq′ + 1) to the both side, and summing over ji, jq, and jq′ ,∑
jijqjq′

(2ji + 1)(2jq + 1)(2jq′ + 1)
∑
Jja

(2J + 1)(2ja + 1)|MJ(aiqq′)|2

= 4τ 2

[(
Rli(aiqq

′)√
2li + 1

)2

〈la||Cli ||lq〉2〈li||Cli ||0〉2

− (−1)−lq
Rli(aiqq

′)√
2li + 1

Rla(aiq
′q)√

2la + 1
〈la||Cli ||lq〉〈li||Cli ||0〉〈la||Cla ||0〉〈li||Cla||lq〉

+

(
Rla(aiqq

′)√
2la + 1

)2

〈la||Cla||0〉2〈li||Cla ||lq〉2
]
. (E.3)

We find that the Eqs. (E.2) and (E.3) are identical. The total number of the orbitals for ji

is

lq+
1
2∑

jq=|lq− 1
2
|

(2jq + 1) = 4lq + 2 (lq 6= 0),

= 2 (lq = 0).

The total occupation number for the subshell jq is∑
jq

Njq = Nlq . (E.4)

Introducing the quantity Nlqlq′
defined as

Nlqlq′
=

(∑
jq
Njq

)(∑
jq′
Njq′

)
[∑

jq
(2jq + 1)

] [∑
jq′

(2jq′ + 1)
] =

NlqNlq′

2(4lq + 2)
(inequivalent electrons)

=
Nlq(Nlq − 1)

2
(equivalent electrons). (E.5)

Let Ni be the number of the holes in the subshell i. Then, the prefactor for the rate is

2π × Ni∑
ji

(2ji + 1)
×Nlqlq′

=
πNiNlqlq′

2li + 1
. (E.6)

This is identical to the prefactor in LSJM scheme.
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