I. ENGERGY CORRECTIONS

The exact solution including the relativistic corrections is defined by
[ﬁo + /\]‘:]'] Oz = €507, (1)

where I/ represents the collection of all the quantum numbers. H, is the zeroth order

Hamiltonian,

- 1

Hy = —§v2 +V(r). (2)
The function V(r) is the Hartree Fock Slater potential. Let ¢l(70) and 553) be the eigen

functions and eigen energies of Hy,

ﬁ0¢,g0) _ €(O)¢(O). (3)

nl YU

Note that the the zeroth order eigen energy only depends on n and [. Since the [state has
2(21 + 1) degeneracy, we work on degenerate perturbation theory. The perturbation series

of the exact wave function and energy are given by

¢5 = o0 + 20 .- (4a)
er = @ p A 4 (4D)

We introduce the total angular momentum operator 7,
J=1+3, (5)

where [ and § are the operator of the orbital and spin augular momentum. We expand
(0)

h
v

in terms of the j coupled basis w(o) which is the

the zeroth order wave function ¢ il

simaltaneous eigen function of j2, 5., Hy, [? and s? operators,

P =G+, (6a)

The superscript (0) is added to the function w(o) to emphasize that it is also the eigen

nljm

function of Hy. The set of the collection of the quantum numbers ¥ to specify the state is

v=(n,l,5,m). (6¢)



(0)

The zeroth order wave function ¢’ is given by
0 0 (0
1(/ ) = Z Cr(zlj) 'm/ wnlz 'm/ (7)
7'm/

Substituting Egs. (7) and (4) to Eq. (1), up to the order of X', we obtain
0 1
”’Jm Z nl] m/ nly mr T (H 8511}m)¢1(1l;m = 0. (8)

Multiplying @D from the left, and integrating over the space, we obtain,

nl]m
1 0
Z [Hflll jj'mm’ gfll}méjjlémm'} Cr(Lz])'fm/ =0, (9)
j/m/
where
nl J3'mm/! /wn(l?:q,H/wnlj/m’dF~ (10)

The operators for the relativistic correction terms up to the 2nd order of a are given by
[—A[/ = I:Ilmass + [:[ISO + ﬁldam (11&)

where the individual terms are given by

ﬁlmass = _%QQa (11b)
. a?1dV . |

H/SO = ?;Wl - S, (11C)
- a?dv 0

Hldar - —Z%E (11d)

The j coupled basis w can be written by the uncoupled basis,

nljm

nl]m Z C ls]?mlms )¢nlmlms (12>

mpms

where the coefficient C(lsj;mymsm) is the Clebsh-Gordan coefficient. The uncoupled basis

is given by,

(0) uld (r)
¢ = r )/lmz(Q>X%mSJ (1?))

nlm;ms

where ufg) is the radial wave function of zeroth order,

1d* I(l+1)

0 0
g T g TV = £t (14)




Y}, the spherical harmoic, and Xlm, the spin wave function. Let us consider the operator

O which does not depend on angles, and introduce the notation,

o) A 0 e U(O)* R U,(O)
@909y = / drr? (Mol ) 6 (Mnl ) (15)
0 T 'S

The matrix element of O is calculated as

/@/J;%;OA@DS;,WCZF = Z Z C(lsj; mymem)C(lsg'; mym.m')(u ()|O|u(0)> Smym! Ormsm,

mpms m ml,

= (unl |O|unl Z C(lsj;mymem)C(Lsy’; mymem”)

mpms

= < |O|“ )Jj’émm’ (16)

On the last line, the orthogonality of the Clebsh-Gordan coefficient is used. Therefore, it is
found that the mass and Darwin terms are diagonal. Using Eq. (2), the mass term AFE
is given by

A = =D — V) (17)

and the Darwin term A Fq.r,

av d (v9 1 d
ABgy = —— [ 4% Ut ) gy — __/ =4 = )% (18
d / Uni dr dr ( r ) ”l dr r + dr Unt A7 (18)

It is also shown that the spin-orbit term is diagonal. Since the operator [ and § commute

each other,

=254 8 (19)

Thus we obtain,

—§)—. (20)

With the use of Egs. (12) and (16), the matrix element is

> (0 Lo, dv
/0 Y Bt e = S (1) = 104+ 1) = 3/4) | T )b (21)

Therefore, the spin orbit term AFgg is given by

Aso = i+ 1) — 10+ 1) = 3/ 22 0)
0 (j=1/2).
= Clug) |2 ) (G =1+1/2), (22)
—2 (L + D)) B |y (G =1-1/2).



The spin-orbit coupling and Darwin terms involve the derivative of the potential V' (r). It
has the singularity at orgin, and the singularity is involved as the lower limit of the radial
integral to calculate the matrix element. In the appendix, we avoid calculating the derivative
of the potential by considering the partial integration. In doing so, we have to calculate the

(0)

n» but it is the smooth function in space. Besides, in the

derivative of the wave function u
Generalized pseudo spectral (GPS) method, the analytical expression of the derivative of

the wave function is given.

II. PHOTO IONIZATION CROSS SECTION

The cross section for the ith subshell by absorbing photon of energy w;, in the dipole

approximation is given by
op (i, win) = 4w Y 8(ga + I — win) [(al2]0:) > (23)

Here the external filed is linearly polarized along the z axis. The summation runs over all
the final state satisfying the dipole selection rule for linearly polarized external fields. Since
the equation Eq. (25b) is diagonal with respect to j and m, using the Eq. (12), we can write
down ¢; and ,,

0
Pa = ¢$g/j/m/ (24}3)

where the energy of the final state ¢, is given by

fa = e + 57(11& + Win, (25a)
5% = AFEpass + ABqar + AEso. (25b)

The dipole operator does not act on the spin part of the wave function, so the azimuthal

quantum number for the spin must be constant,
ml = ms. (26)

In what follows, VMK refers to Quantum Theory of Angular Momentum, by Varshalovich,

Moskalev, and Khersonskii. The dipole operator is a irreducible tonsor operator of rank 1,



so we evaluate the matrix element utlizing the Wigner Eckart theorem (VMK 13.1.1. Eq.

2 C (14" mom’)
Jiy ;s mum I .

The Clebsch Gordan coefficient tells us the selection rules for j and m,

(eol'j'm!|z|nljm) =

jt=J, j£1, (28a)
m' = m. (28b)

Since the spin-orbit coupled basis functions do not have a parity, so j' = j is also allowed.

The reduced matrix element is given by (VMK 13.2.1. Eq. (5))

5]

(eal J'||2lIntj) = (=125 + )2 + 1) (al'll2lInl). (29)
J
Substituting Eq. (29) into (36), we have

5]

(eal'j'm!|z|nljm) = (—1)7F'F51 /25 +1C(j15'; mOm) (e'||z]|nl).  (30)

-/

The Wigner Eckart theorem of the dipole operator z for uncoupled basis is written as

C(11l';m0my)

eJd'm)|zInlmy) = edl'l|z||nl), 31

so the slection rules for [ and m; are given by
I'=1+1 (32a)
m; = my. (32b)

Summarising Eqs. (26), (28), and (32), the selection rules are given by

ml, = msg, (33a)

m; = my, (33b>

m' = m=m;+ ms, (33¢)

U= 1+1, (33d)

i=j, =+l (33e)

The left hand side can be calculated analytically as (VMK 5.9.1. Eq. (4))
!/ 2l + ]‘ / / !/
(eal'my|z|nlmy) = ST 1(5al |r|nl) C(111"; 000)C (111" m;0my). (34)



Therefore, we obtain the reduced matrix element in Eq. (31),
(eal'||2]nl) = V2L + 1O 000) (o' r|nl) = (—1) 5 /T (el r|nl), (35)
where the symbol [ is the bigger of [ and I’. Substituting Eq. (35) into Eq. (30),

5
jlll/

(e’ j'm|z|nljm) = (—1)j+l'+5+1+l+12_l,C(jlj’;m()m’) (27 + 1)l (eal'Ir|nl).

(36)
Using the orthogonaliy of the Clebsch Gordan coefficient (VMK 8.1.1. Eq. (8) and 8.4.4.
Eq. (17)),

J . J v
o 27"+ 1 .. 27" +1
2 /. _ 2 1. —
Z{C’(jl],mOm)— 3 Z'O(j] 1;m —m0) = T (37)
m=-j m=—j
the m-averaged matrix element squared become,
2
(27 +1) ) U s
l / 2
23“2%' (eal'§'mlz|nljm)[* = === P [(eal'|r|nl) . (38)

The photo ionization cross section is obtained taking the summation for the above formula

over I" and j', whose ranges are given by the selection rule, Egs. (33),

2
41 j+1

op(i, win) :—7r Wiy Z Z I~ (25" + D)|{eal'|r|nl))?

S =y gl

s (39)

Using the symmetry and orthogonality of the 65 symbol (VMK 9.4.2. Eq. (2) and 9.8. Eq.

(3))

2

ARG Lji | 1
jf§1|(2j +1) o Ta (40)
With the use of this, Eq. (39) is reduced to
4 S
0y (i, win) = S in l/% o (el Irnd) (41)

Let N; be the number of electron occupying the ith subshell, then the total photo ionization
cross section is given by

I+1
tOt(z Win) = N;op (1, win) = —7T ozme Z
=[l- 1|

g

6al'|7‘|nl>|2. (42)



III. AUGER RATE

The auger rate is defined by
Ligq =27 Z |Vaige — Uaiq’q|25(5a +&— &g —Eq) (43a)

where the notation a and i refer to the Auguer electron and the initial hole in the orbial ¢,
and ¢ and ¢ the final holes. The summation for a runs over all the possible states for the
Auger electron. The quantity v,y and vy, represents the matrix element of the direct
and exchange terms for the two body operator. The multipole expansion of the two body

operator is given by

LN S L () () Ch (), (44a)

Cin(®) = 157 Vi) (441)

The summation running over p gives us the scalar product of the tensor operator of rank k.

where

Introduing the scalar quantity Ty (k),

k
To(k) = 3 (~1)"Cop(4)Ci(0), (11c)
pn=—=k
the two body oeprator is written as
1 > r’i
= > WTo(k»). (44d)
k=0 ">
A. non relativistc case
The direct term v,44 is given by
1
Vaigy = (EalaMiaSMsa; nilimlismsi]r—|nqlqmlqsmsq; Nyl Mug SMisyr) - (45)
12

Introducing the LSJM basis, we cast the above matrix element into

v = D D DD DD

L'My, S'"Mgy J'M' LMy, SMs JM
C(laliL/; mlamliML/)C(ssS’; msamsiMs/)C(L’S/J’; ML/MS/M/)

X Clyly Ly mygmyy M1,)C (58S msgmisy Ms)C(LSJ; M MgM)

X

1
(i LS T M| Iyl LS T M), (46)

7



Let us define the radial integral,

T‘k

Ry (aiqq) :/ drl/ dTQUaala(Tl)Unili(TQ)Tk—ilunqlq(rl)unq/lq/(7"2)'
0 0 >

Substituting Eq. (C.5),

Vaiqg = Z Z Z C(lalzL7 mlamliML)C<SSS; msamsiMS)

LM SMs JM
X Clyly Ly mygmyy Mp)C (58S msgmsy M)

x C*(LSJ; My MgM)(—1)"+ath Z Ry.(aiqq') Arr(aiqq’)
k=0
= D Y CllaliLsmuamu M) C(s5S; maamai M)
LMy, SMg
X C(lqlq/L; mlqmlq/ML)O(SSS; msqmsq/MS)

X (—1)FHath Z Ryi(aiqq") Axr(aiqq’).

k=0

(47)

We know that only the terms of M’ = M and M, = M, contribute to the summation. This

tells us that we also only need to take Mg = Mg. And the summation over J and M are

carried out using the orthogonality of the Clebsch-Gordan coefficients. We further multiply

the constant 7 to this quantity to keep the normalization of the LSJM basis function, and

redefine the quantity v, namely,

where

=T Z Z C(Ll; Ly mygmy; M) C(88S; mggmig; Mg)

LM;, SMs
X C(lqlq/L; mlqmlq/ML)C(ssS; msqmsq/Mg)

x (=1 N " Ry (aiqq)) Avp(aiqq),
k=0

Vaiqq

7 = 1 (inequivalent electrons),

(equivelent electrons).

1
V2

Together with the exchange term,

where

Vaiqq' — Vaiq'q = r(aiqq ) Mps(aiqq'),

r(aiqq’) = Z Z C'(Ll; Ly mygmy; M) C(88S; mggmig; Mg)
LM; SMs

X C(lyly Ly mygmyy M) C (8855 mggmsy M),

8

(48a)

(48b)
(48¢)

(49)

(50a)



and

kmax

Mps(aiqq') = 7(=1)FHath Z [Ri(aiqq) Axr(aiqq) + (—=1)"** Ri(aiq'q) Apr(aiq'q)] -
= (50b)
We consider the average for the quantity Eq. (49) with respect to the initial and final holes
1 and q, ¢,

N; 9
2(21; + 1) X Nigtyy X Z [Vaiqq — Vaiq'al” (51)

MMMy g
where the constant N; represents the number of holes in the subshell 7. The first prefactor is
introduced to implement the average for the initial hole 7. Let N;, and qu, be the occupation

number of the subshell ¢ and ¢’. Then the second prefactor NN, o1, 18 given by

N i, N (inequivalent electrons) (52a)
, = , (inequivalent electrons a
Wy T 41, + 2)(dy +2)7
N (N, —1
= (i, = 1) (equivalent electrons). (52b)

(41, +2)(4l, + 1)’
The second prefactor is introduced to implement the average for the final holes ¢ and ¢'.
The Auger rate is obtained by summing up Eq. (51) over all the possible states of the Auger

electron and multiplying 27,
TNiN1,
2
ity =~ 20 D vuiay = Vaigal”
! lama myimigmygr
The summation over my, (x = a,1i,q,q’) can be done analytically. For given value of L and S,

the same My g(aiqq') appears totally (2L 4 1)(2S + 1) times. So, expanding the summation

of the inside of the absolute square, it looks like,

Z ZZ(...)2

Mmigmiimigmyg | LMy SMg

= Z (Cl+02+"')MLS+(CI’+02’+"')ML’S/+"' s

(. S/

-~

(2L 4+ 1)(25 + 1) (2L +1)(25" + 1)

Mg myimygmy g
where ¢; represents the product of four Clebsch-Gordan coefficient for a certan combination
of My, and Mg. The cross terms vanish after taking the summation over my, (xr = a,1i,q,q)
using the orthogonality of the Clebsch-Gordan coefficients. Therefore, we obtain

> Vi — Vaiga =Y (2L +1)(25 + 1)|Mys(aiqq') . (53)

MM MMy g LS



Finally, the Auger rate becomes

l +lq+l / lq+l /

Lo, = Z > Z (2L + 1)(28 + 1)|Mys(aiqq)|*. (54)

2l +1 la=0 L=|ly—l | S=0

B. relativistc case

In relativistic case, we introduce the relativistic energy corrections to all the non relativistc

subshells. We write down our basis functions in j7 coupling scheme,

InglaJqma; ngly jome) = Z C(Jadq J; mgmg M)|jojg IM), (55a)
JM

[Ralafarma; nilijimi) = Y Cjagi's mamiM')|jagid M), (55b)
J/M/

Using the Eq. (D.10),

Yaiqq" — Vaiq'q = (_1)J+ji+jq/+la+li [jajijqjq/]r(aiqq')MJ(az’qq’), (56a)
where
r(aiqd) =Y Cljaji; mamiM)C (jyjy J; mamy M), (56D)
kmax
M;(aiqq') = 7 [Rilaiqq')Bes(aiqq) + (=1)~’ Re(aiq'q) Brs(aiq'q)] . (56c)
k=0

The symbol [ab...c] is defined in Eq. (D.2). We consider the average over the initial and
final holes in the subshell ¢ and ¢,¢’. Let IV, be the occupation number of the subshell g,

then let us define the constant Njojr»

Njj., = 7 quNj?' (inequivalent electrons), (57a)
! (24 +1)(2jy +1)
N; (N; —1
= M (equivalent electrons). (57b)
2j4(2j4 + 1)
Then the average is calculated as
N,-njqjq,
m m;ﬂ ‘Uaiqq’ - Uaiq’q|2
= NiNj,j,(24a+1) > |r(aiqq)M,(aiqq) ),

10



where

Njj, = Nj,Nj,, (inequivalent electrons), (58a)
27, +1
= j;-—i_ N;,(N;, — 1) (equivalent electrons). (58b)
Ja

The Auger rate is obtained summing up this quantity over all the possible state of the Auger

electron with the prefactor 2m,

r = 27 N;N;

iy D Y. (2a+ 1)|r(aiqq) M, (aiqq))|. (59)

a]ama mlmqm !

JisJadg!

Recalling the discussion for non relativistic case, the summation over m, (r = a,i,q,q’) is

reduced to

> r(aiqq) My aiqq)?
Jatig
= Z Z Z C(jajid; mamimoM)C (jajg J; mgmy ) My (aiqq')
Mamnimgm s | J=lig—gy| M=
Jatiy
=S @ 1) M aigg) (60)

J:Uq *jq/ ‘

Using this result, we finally obtain,

lLitlgtly latt gty
Livdoiy = 27NiNji, Y Z > (e + 1)(2] + 1)|My(aiqq)]>.  (61)
1a=0 jo=|la—%| J=lig—Jy|

IV. FLUORESCENCE RATE

Let us consider the process which the initial hole in the subshell ¢ is filled by the electron
in the subshell ¢’ with a photon emittion of momentum EF into a solid angle d€2r. Let €,;F Ap
be the unit vector of the polarization of the photon being indexed with the quantity Ag.

The fluorescence rate is defined by
a’ 5 . 2
Lo = 70— 1) 2 [ a0, ., - on)| (62)
F

where the summation running over \r indicates that the emitted photon is not polarized.

In the spherical basis representation, the polarization and dipole vector are represented by
3

3
Forp, = E €6, and 7":5 7€, (63a)

=1

11



where €; (i = 1,2,3) is the unit vector in spherical basis. The coefficients are given by

(€0, €x1) = (cosby,,0) (Ap =0), (63b)
= (0, FeF r sindy,) (\p = £1), (63¢)
and
ro = rCio(), (63d)
re; = rCi+1(9). (63e)

Here the function Cy, is defined in Eq. (44b). Since both the polarization and dipole vector

are irreducible tensor operator of rank 1, the inner product of them is written as,

™
K‘l"L

1
T Z (—1)*eur—,, = rcosOpCio(2) (Ap =0) (63f)
p=-—1

= +re™F sin 00151 () (A\p = £1). (63g)

Using this result,

1

> [ el o] =5 3 HeulrCulonl. (64)
AF pu=-1
Therefore, the rate is reduced to
4
Log = 3¢ (I — 1) Z | Spq‘Tclu‘SOqH : (65)

p=-—1

A. non relativistic case

For p = 0, %1, the matrix elements are evaluated utilizing the Wigner-Eckart theorem,

(PqlrCrulpg) = (nglymigsmsg|rCuy|nglymig smsy)

0 0
= <U£zq)lq |T|U$zq)/lq, ) {lgmugsmisq| Cryllgmug smiq )

C(lq/ 1lq; mlq/,umlq)

= Gy (i, 715 ) ot VallGilli)
(66)
Hence, the selection rules are given by
ly, = 1y £1, (67a)
myg = Myg, My £ 1. (67b)

12



Substituting Eq. (66) into (64), and using

(IC L) = F/1s Iy = 1, £ 1), (68)

we obtain

4

2
0
L R [N T

aq

1 +1 Z C? (1 Uy myg pmy,) — (69)

Averaging out this quantity for the initial and final state ¢’ and ¢,

1
2(21,+ 1) Z 2021y + 1) +1 Z Far

mygMsq Myt Mg gt

= (upy Irlus), )

Iy — Iy)’

(70)

Tqlq

2
3

Let Nqu{ and qu, be the number of the holes and electrons in the subshell ¢ and ¢’. Multi-

plying these constants to the above result, we redefine the fluorescence rate,

2 l NZHNZ ! 2
r.,== 3 I 3 > q q (0) (0) ] 71
qq 30{ ( q q ) 2lql + 1 2lq 4 1 <unqlq|r|unq/lq/> ( )

B. relativistic case
As well as non relativistic case,

<§0q ’TC’I;L ’ Py’ > = <nqlqquq |TCI# |nQ’ Ly jgmy >

= (u nquun Ay ){lgiamq|C1lly jymy)
<lqjq||cll‘lq’jq’>

_ o S
= (u nqu n,lq,>c(]q’1]q7mq’umq) 2. 1 1
0 0 oL
= <u$zq)lq|T|u7(zq),lq,>c<]q’1]q5mq’:“mq)
. l r S ) 1
X (Lt BT Ry, (72)
Ja q
Therefore, the selection rules are given by
jq = jq’> jq’ +1, (73&)
lg = 1y 1, (73b)
mg = my, my £ 1. (73c)

13



Then we obtain

2 lq/ S Jg

4 ‘
Lo = gag(—,q — 1)’ (2jy + 1) <u£g)lq|7ﬂ|u(0) )

ngrly

Jo 11
1
x Z C®(Jgr Ligs my prmy) (74)
p=-—1
Averaging out this quantity for the initial and final state ¢’ and ¢,

2

1 1 4 l/ S j/ 2
I, = a3, —1)3. ¢ 7 71 © 1@ (75
TP LTy DI Al LR DR i), I, )| - (75)

mgq mq/ ]q lq

Let qu, and ij be the number of the electrons and holes in the subshell ¢’ and ¢q. Multi-
plying these constants to the above result, we redefine fluorescence rate,

2
2
@O, 1, )] (76)

nglq ngrly

4

l/ S )
Ty = 503, = I LN, NJ L Ja

Jg 1 1

It is easy to convert this result into the one which we obtained in non relativistic case.
To this end, let us switch off the relativistic energy corrections. Summing up the matrix
element Eq. (74) with respect to m, and my,

2

4 0 0 2. , ly s Jg
> T = 50y = 1)l () Il )| (24 + D@+ 4 7

m,Mg jq 1 l‘]

We further sum up this quantity over j, and j,. Using the orthogonality of the 65 symbol
given by Eq. (3) in the Sec. 9. 8. in VMK,

4 0 0 2 1 .
Z Z qul = gO[S(Iq - ]ql)3l> ’<U£Lq)lq T|U£Lq)/lq/>’ 21 + 1 2(2]‘] + 1)
q

jq/jq Mgrmgr Jq
8 0 2
= gag([q - [q’)31> fzq)/lq/>‘ .

0
(W) Jrlu

Multiplying the prefactor,
NlI(;I qu
2(21, + 1) 2(2ly + 1)

to the above result, we obtain the fluorescence rate in non relativistic case.

Finally, we point out that the current relativistic approach is inappropriate for heavy

1

atoms. Let us consider the radiative transition from 2p to 1s for 1s™ configuration. We

14



obtain the following quantities:

ly=0, and Iy =1,

ls =max|ly,l,] =1, =1
The rate in non relativistic case is then reduced to

4
1—‘152p = ga?’(Ils - [2p)3‘d(2p - 18)|27

where

d(2p — 15) = (ul?|r|ul)).

In relativistic case, with the further use of

. 1 P 13
= — an ;) = =, =
]q 27 jq 27 27
2
ly s Jg B 1 1
jg 11, (2, +1)(2s+1) 6
we obtain the partial widths,
2
F181/22qu/ == §a3(1—181/2 - IQp]q/ )SN]q/’d<2p — 15)’2.

The ratio relativistic to non relativistic case is given by

3 3
Fl51/22171/2 + 1—\151/221’3/2 - <[131/2 - I2p1/2) + 2(IL"‘1/2 - [2171/2)

Flst 3([15 - IQp)3

For the case of Uuo atom of Z = 118, the energy of x-ray photon being emitted in non rela-
tivistic case is [1;— Iy, = 139666.82 (eV). For relativistic case, I1s, ,, — Iy, , = 164690.11 (eV)
and 1'151/2 — 12p3/2 = 172637.59 (eV). These numerical values give us the above ratio ~ 1.81.
The numerical results for the radiative widths are given by I';s, = 8.03 (a.u.) in non rel-
ativistic case, and Flsl/ﬂpw + Tlsl/22p3/2 = 4.39 + 10.1 = 14.5 (a.u.) in relativistic case,
respectively, and the ratio of them are calculated as 14.5/8.03 = 1.81, which is consistent
with the above discussions. Since the non relativistic formula somehow gives us surpris-
ingly accurate values even for heavy atoms, the current relativistic approach fails for heavy
atoms. We need to introduce the corrections for the orbital wave functions to obtain the

dipole matrix element of better quality.
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V. BOUND-BOUND TRANSITIONS

The exciation cross section within dipole approximation for the transition from the initial

orbital ¢ to final orbital f is given by
opli — fim) = Amawnl (sl 2l (s — &5 — win) (77)

Here the line widths of ¢ and f are approximated to be delta function since we assume that
these are much narrower than a bandwidth of pulse. For instance, the bandwidth of pulses
at 5.5 keV in SACLA experiment was considered to be 1% of the photon energy i.e. ~ 50
eV. Thie photon energy opens photo ionization for 2s shubshell. The width of Xe (2s71)
configuration is about 3.6 eV, which is much smaller than the band width of pulse. The
dipole operator z = r cos § = rC is irreducible tensor operator of rank 1, so we employ the

Wigner-Eckart theorem to evaluate the matrix element.

A. Non relativistic case

The Wigner-Ecckart theorem gives us

(prlzlpi) = (nUmymi|z|nlmims)

= (W'U|r|nd)0mm, (I'my|Crollmy)

y /|| Caolll
), | 52 CULL O (79)

200+1
Averaging out matrix element squared with respect to the magnetic and spin quantum
numbers of 7 and f,

1 Z 1 Z oslzle) P = L [ |r|nd) 2 Z C2(11; mOm/)
22 +1) 4= 221 +1) £ fiEi 2021 +1)2(21 + 1) 4 ’
yml mpms m;my
1 IS |((nU|r|nl)|?

T 3202+ )20+ 1) (79)

Let N; and N/ be the number of occupations and holes in the initial and final orbitals. We

redefine the cross section, Eq. (77), by replacing the matrix squared to the above result, and
multiplying N; and Ny,
L' |r|nd) |2

, 2
ol = o) = GOSNy (2 +1)(20 + 1

3

)5(€f — & — win). (80)
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B. Relativistic case

The Wigner-Eckart theorem in relativistic case is
(orlzlei) = (T j'm|rCionljm)
= (n'l'|r|nl){I'j'm/|C1o|ljm)
C(j1j'; mom’) . ,
’ I'5'1|C1ol |1
( 25 1 (I'3"1Col|lg)
(n'U'rinl)C(j15"; mOm')

n'l'|r|nl)

. [ s 3
G ARVCTESE SR S (4 e
71

l/

» I s j
— F (1) + D e mom) T (81)

j/ 1 l/
Averaging the matrix element squared with respect to m and m/,

1 1 )
T ; 1 ; [CHETH

2

[ L'sj o
— Qj/—j_1\(71’[’]7‘]711)]2 A ZCQ(jlj’;mOm’)
J m/'m
2
l [ s 7
= it (52)
]l 1 l/

Let N; and N jf/{ be the number of occupations and holes in the initial and final orbitals. As
well as non-relativistic case, we obtain

2
[ s

4
O-Z)(Z — f7 win) == gﬂa2winl>NjN;’{<n/l,|T|nl>|2 . 1 l,
J

5(€f +é&; — wm) (83)

C. Convolution with pulse

Assuming that a pulse has Gaussian profile in time. Then its energy distribution is given

by
F(B) = ——e 555 (34)
= [ 202 .
oV 2m
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Convoluting the cross section with this energy profile,

/ op(i = f,win) f(er)dey
2 l T'r|nl)|?
— gﬂaleNfI (27)?1)‘(7“2'7_3'1) X f(e;) (non relativistic), (85a)
2
4 Hy it o) s Ce
= gma Winls> N N7 (n'l'|r|nl)| x f(g;) (relativistic). (85b)
j/ 1 ll

VI. SHAKE PROCESS
A. Orbital overlap

A process accompanying a change of an electric configuration of atom from C' to C’ can
trigger sudden change of the atomic Hamiltonian. Let i(“) and i(°") be the orbital i belonging
to the atomic Hamiltonian H(©) and H(") for the configuration C' and C", respectively. Since
the wave function of the orbital i(“) is not the eigen function of H(“"), the electrons in i(¢)
before the decay relax into the orbital i(°). In this relaxation process, there is a finite

probability that additional elctrons are ionized. This is called shake-off branching process.

The partial shake-off branching ratio v; for the electrons in the orbital 7 is given by

) 2
=N (1= [ (36a)
Let I'(C' — (") be the rate of one of decay channels which makes the transition from C' to
C'. Then the corresponding shake-off branching rate is

vI(C — C"). (86b)

When an additional electron is ionized by shake-off, the kinetic energy of the electron el

being ionized by the decay process from C' to C’ is then substracted by the binding energy

(@)

of the electron in 7%,

— (=, (86¢)
If the above qunatity is negative, the electron is not ionzied by shake-off process from the

orbital i(®). Summing up the partial shake-off branching ratio over all the orbitals, we

obtain the total shake-off branching ratio +,

v = Z Vi (86d)

18



The rate which does not accompany the shake-off processes after the decay from C' to C' is

given by
(1—~)T(C —C"). (86¢)
B. Determinant overlap
N-body wave function ® (&, T, ..., Ty) is written as
(i, o, ..., ZN) = VNIAD (i, o, . .., Tn), (87)
where the function @y (&, T, ..., Ty) is the Hartee product given by
Gy (21, To, ..., Tn) = ¢1(T1)P2(T2) . .. ON(TN). (88)

The operator A is the antisymmetrizer defined by,
" 1 A
A= > (~1yrP, (89a)
P

where P is the permutation operator. The symbol p represents the parity of a permutation.
We define the parity of the Hartree Product Eq. (88) as 41, and the others +1 or —1 either
the number of permutations are even or odd. The summation in Eq. (87) runs over all the

possible permutations multiplied by the parity. The important properties of A are

A2D (2, Ty, ..., BN) = AD(T), Ty, ..., T). (89b)

At = A (89¢c)
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Using them, the derterminant overlap is thus given by

@) = N[ A 6@y .. o)) Alon(F)0a() . o) d5
_ N / GTNGT) .. ¢ (Fn) A2 [B1(T1) el o) . . G(n)]
= N[ G@)6(5) . 6 @) Alon(E)0a() . 0T di
= [ @) Y VPP [0 @) n(d) . ol d
> <—1>p<¢a|¢m><¢g|¢a:>3...<¢;V|¢UN>

(¢1]o1) (B1ld2) -~ (¢ilon)
(Dh]d1) (Bhld2) -+ (¢hldn)

(Snlor) (Snld2) -+ (Sylon)

The summation on the last line but one runs over all the possible combinations of oq,...,0x.
The determinat overlap fails in relativistic case. For instance, for the case of Ne atom, the

matrix Eq. (90) is written as

< /15|¢18> < lls‘¢2s> 0 0

<(I3/’(I)> :det < /25|¢18> < /23|¢2s> 0 0 ' (91)

0 0 <¢/2p, |¢2p7> <¢l2p, |¢2p+>
0 0 (P, [d2p.) (D, |P2p.)

Since < /2p_‘¢2p7> = < /2p_’¢2p+> = <¢/2p+|¢2p+> = <¢/2p+‘¢2p+>7 the rank Of the matrix is 3.

So, the determinant is 0.

C. Thomas model (adiabatic approximation)

The original idea is found in T. D. Thomas, PRL 52, 417 (1984). Let H(t) be the N-body

time-dependent Hamiltonian as

Hit)=>" <—%V$ - Z(t)) +Zi (92)
. =

where

Z(t) = Z +q(t). (93a)



The function ¢(t) is given by the error function,

1 t
t) = e % odt. 93b
a(t) %%[ (93h)

The important properties of ¢(t) are

tlim =0 and tlim q(t) = 1. (93c¢)
The function ¢(t) models the photo ionization in which the nuclar charge Z at t = —oo

increases to Z + 1 as t = oo by the leave of the photo electron of the time scale ¢y from a

parent ion.
The solution of the TDSE
0
i W(E) = H() W (1) (04)
is expanded into
WW=éW@W%mszW+Z 1] (£) e~ e FLOI

n Z / #)|E(t))e PR | . (95)

The function |®g(t)) represents the ground state configulation, |®7) the configurations of
shake-up states, |®F(¢) those with a shake-off electron. These are the eigen function of the

Hamiltonian H(t),

H(t)|®o(t)) = Eo|Po(t)), (96a)
H(t)|®; (1)) = E;|P;(t)), (96b)
H(0)|BE(1)) = B (1)) (96c)

The function |®F(t)) is energy normalized,
(@F|0f) = 6,,0(E — E). (96d)

In the case £ = E’ but i # j, the right hand side of the above equation vanishes. It is found
that %—i] =—>. %t) is a one-electron operator. Using the Hellman-Feynman theorem, the

matrix elements with repsect to determinants reduce to these with respect to orbitals,

(@515 ) = (97:)
(0] gy tar() = oD MO0y oy
sl gar) = TNERD o s g, (970)
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The algebra in the Hartree-Fock approximation is given in the chapter two in A. Szabo and

N. S. Ostlund, Modern Quantum Chemistry. Let x(t) be

=i (Bolt) 5 ol (98)

the equation for the coefficients are thus given by

dcg - <Z(t)’%|7’(t)> I —i [t [Br () —Eo(t)]dt’
> <Z<t>’%|E> 1\ E —iEt+i [t Eo(t')dt'

DS /0 B gy (e e dE, (99)

dc;  (dy dE; (sI20) Bty

i_ [ %X _ i\ s NI i [t [Bo(t)—B3(#)]dt
= (G =1 a0+ g s (et o)

d -E/ E/ l ) t .t / Tyl

Cj o < |r|j( )) q/(t)co(t)efzf_oo Eo(t')dt' +iE t (99C)

dt — EP' — Ey(t)
In the last equation of the above, the transitions between two differnt shake-off configurations

are ignored. The initial condition of Eqs. (99) is,
co(—o0) =1, and ¢} (—oc) = c(—o0) = 0. (100)

Egs. (99) can be solved iteratively. Assuming the zeroth order solution the same as the

initial condition,

(1) =1, and V() = V(1) = 0, (101)
the first order solution is given by
(1) =1, (102a)
ST
() = Aljgﬁs—e‘ 7 (102b)
) —s,0

A. SPIN-ORBIT TERM H{,

Here, we leave some technical details to evaluate the matirx element of the spin orbit and
Darwin terms avoiding the Coulomb singularity.

[y o) e

0

o 1 2 2 du(O)
_ (0) _ = (0) nl
= —Ay+ /0 1% {72 [un, ] Cuy) } dr, (A1)

I = @u”;ﬂ Wy = ;V [U;z)}




where

A=t { v [o0)] ). (A2

r

Near the origin, the potential V' (r) becomes hydrogenic i.e. —Z/r. Then the wave function
u'®) behaves ~ ¢+, Therefore,

A, = lim F X (—g) X (cnﬂ“lH)Q]
r

r—0 |1

= —lim [Zcilrm]

r—0

) -z a=o), (A3)

0 (I#0).

For s state, A, has a finite value. However, the energy correction for s state due to the

spin-orbit coupling is zero. So, it is found that A,; does not play a role in spin-orbit coupling.

B. DARWIN TERM H/

dar

Using the results of the spin-orbit term Eq. (A.1),

oo, (0) (0)
(0) (0) u,, dV 0 [wu,
<unl |H(/iar|unl > - /O TZWE _nl_ T2d7’

r

o 1dV (0)} 2 dV (0) du((z)
= E— R n d
/0 ( r dr [u"l + dr ™y "

00 (0)
= —1pn +/ d—vu(o)—du”l dr
0

dr ™ dr
o) 2
du(o) 00 du(o) dQU(O)
= -1, \% (0) nl _/ 174 nl (0) nl d
L Vi dr 0 dr + U dr? "
o0 WO\ a2
= — nz—Bnl—/O Vel +u5ﬂ>Tgl dr, (B.1)
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where

0
0, dull) (r)

By = lim |V(r)u,; (7) o

r—0

r—0

Z
= lim |—= x '™ x (1 + 1)cnlrl]
r

= lim [-Z(1 4+ 1)c2;r*]

r—0

_ —Zc2, (1=0), (B.2)

0 (1£0).

It is thus found that B,; vanishes for nonzero [ states. For s state, it has a finite value, but
it cancels out A, of I,,5. So, the value A,,; and B,,; does not contribute to the Darwin term.

So, the Darwin term becomes,

o0 ©) O 2,,(0)
(0) H _ v<e— 1 |: (0)] 2 (0 du . dunl _ (O)d Upy d
< | dar| > A ,',,2 Ui + - r Uy dT dr Uy er r

The 2nd derivative is further eliminated using the Schrodinger equation.

C. AUGER MATRIX ELEMENT IN LSJM SCHEME
Regarding the quantity To(k) = To(k) - 1, using the Wigner-Eckart theorem,

1
i L'S" M-Iyl LS.TM)
= O sOnrn (—1)7HEH ZRk aiqq') (L[| To(R)[IL)(S"[1]].S)

TS rrol,
— 6J/J5M’M5$/S(_1)J+L+S 28/ Z CLqu S S/ J <LHTO(]€)HL>
k=0

Z“  EITo(R) )
= 5J/J6M/M55/55L/L 2AJ+LA+S) CLqu T (Cl)
P 2L +1

Using the Wigner-Eckart theorem,

! N / (5 / (5
C(L'0L; My, OML)(L’HTO(k:)HL) o ML/ML<

L' My |To (k)| LM) = _
LM To(R) LM:) 2L + 1 2L + 1

L To(R)IIL). (C.2)
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Regarding the quantity Ty(k) as a scalar product of irreducible tensor operator of rank k,
the left hand side is written also as
lo 1y K

(L' M| To (k)| LML) = 6151001, a1, (—1) 2l bt
q 4

(L] |Ck[llg) (il |C[lgr). - (C.3)

Threfore the reduced matrix element is given by

(L'Mp/||To(k)|| LML) Nl Kk
T B OVIVACE Vst S SACA AL AR R
q Y

Using this result, Eq. (C.1) reduces to

1
(Lulil!'S' T M| |lyly LSTM) = 8180a18s561:100,001,
12

x (=1t N " Ry (aiqq) A (aiqq)),  (C.5)
k=0
where
L 1, k
Apr = (Lal |Crl 1) L] | Crl 1) (C.6)

q Y

The selection rules give us the cut-off for the summation over k. These are found in 67

symbol and the reduced matrix elements in the function Ayz. For the direct term vgqq,

0, — k| <l, <1, +k, C.7a

(C.7a)

I, = L] <k <ly+1; (C.7b)

lo +k+1, = even, (C.7c)

li+k+1ly = even. (C.7d)
Substituting the second equation into the first, we obtain

lo <li+1,+1y. (C.8)

Rewriting Eq. (C.7a),
o —lg) <k <l,+1, (C.9)

and summing to Eq. (C.7b) and using Eq. (C.8),
1
k< §(li Flo+ly + 1) <L+l + 1y = Epax (C.10)

Repeating this procedure for the exchange term, we obtain the same results Eqs (C.8) and

(C.10).
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D. AUGER MATRIX ELEMENT IN j; COUPLING SCHEME

The direct term is evaluated as (VMK 13. 2. 1 Eq. (5))

(Jadid' M ’I—\quqf JM)

Ja J . . :
= 0ys0mn(—1) JHqHZZRk aiqq { o (JalColldq) (il Coel )

Jq ]z

<

=N

= 6JIJ5M/M( 1 JHiatii ZRk aqu j.a ].q
J¢ Ji J

. ly 57
X (_1)]q+la+s+k\/(2ja 2](] { q q <laHCkqu>

Ja k la
. l/ S T
< 1yt g e i+ 0 T e
Ji k1
= 0100 (—1) I GG ] Y Rilaiqq’) Br(aiqq)), (D.1)
k=0
where
[ab...cd] = (2a+1)(2b+1)...(2c+ 1), (D.2)
and
. .ja j k l S j l/ S j/
By (aiqq’) = ’ Lo LT allCK) Gl . (D3)

Jg Ji J Ja k la Ji kL
The radial integral Ry(aiqq’) is defined in Eq. (47). Writing down the selectrion rules from
the three 65 symbols and two reduced matrix elements in Eq. (D.3),

o = Jol <k < Ja+Joy (D.4a)
g — Jil <k < jg + ji, (D.4b)
g —la] <k <l;+ 1, (D.4c)
gy — L <k<ly+1, (D.4d)
lo +Fk+ 1y = even, (D.4e)
li+k+1y = even. (D.4f)
Rewriting the triangle relation for Eq. (D.4a), and using Eq. (D.4b),
g — k| < Ja < Jg + & < g + Jo + i (D.5)
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Summing up Egs. (D.4a) and (D.4b), and using Eq. (D.5)

3
k < (ja+jq+jq’+ji) qu+jq’+ji < lq+lq’+li+§ (D‘6)

N | —

Rewriting the triangle relation for Eq. (D.4c), and using Eq. (D.4d),
Uy — k| <l <ly+k<li+l,+1,. (D.7)
Summing up Egs. (D.4c) and (D.4d), and using Eq. (D.7),
B<l,+1ly+1; (D.8)
Having Eqs. (D.6) and (D.8), the upper boundary of k is
Fomax = Ly + Ly + L. (D.9)

Using Egs. (D.9), the matrix element Eq. (D.1) becomes

krnax

Uadid M| oo TM) = 8y yOnarng (= 1) Mt il .55 Y Ri(aiqq’) Bry(aiqq').
k=0

Note that writing down the selection rules for the exchange term, one finds that
Egs. (D.5), (D.7) and (D.9) can also be applied to the exchange term. We further mul-
tiply the constant 7 to this quantity, which keeps the normalization of 77 coupled basis, and

redefine the matrix element,

k
o L .. N . .
(Jagid M ’Ir—mqujquM ) = 0y sbarg(—1) T Mt 5G] Y Rilaiqq') By (aiqq).

k=0
(D.10)

The constant 7 is the normalization factor for anti symmetrized wave functions,

7 = 1 (inequivalent electrons), (D.11a)
1
= —— (eqivalent electrons). (D.11b)

V2
E. COMPARISON BETWEEN LSJM AND jj COUPLING SCHEME

Comparing the Auger rate in LSJM scheme, Eq. (54), and the one in jj coupling scheme,

Eq. (61), we notice that the summation over [, of the Auger electron is common. So, we
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only consider the sum over LS in LSJM scheme, and the one over J and j, in jj copling

scheme, and compare them. Let us consider the case
ly = 0.

Note that this case still contains the Coster-Kronig transitions, and the 65 symbol becomes
very simple. In this case, using Eq. (1) in VMK in 9. 5. 1, the function Ay, Eq. (C.6) reduces

to

01,20kl

V(20 +1)(2k + 1)
01,101, L

V(2L +1)(20, +1)

Then the function Mg Eq. (50b) becomes

l)la g+

AkzL(aiqq,) = (- <la||0k||lq><li||ck||0>a

Arz(aiq'q) = (=1)Hoth

(lal |Ck10) (L] Crl 1) -

SN L1+l = 5qu5kli
Mps(aiqq) = 7(-1) kz% Ry(a QQ)\/(qu+1)(2k+1)
01,101, L
V(2L +1)(20, +1)
I Vs {Rzi(aiqq’)

{lal|Cilllg) {L:][Ci]|0)

+(—1)L+5Rk(aiq’q)

(Lal[CxI10) (Ll Cr[lg)

{la] |C:|11g) (L1 C1,110)

V20+1 [ V241
+ (1 D o) el | (©1

Threfore,

> (25 +1)(2L + 1)| Ms(aiqq)?

LS
1qq
= #yes 1y [Tl e
Ry, (atq'q 2
+<—Wﬁﬁﬁ%T%mW%WMWQmm}
Ry, (aiqq 2
= ar? | ()l e o

Ry, (aiqq) Ry, (aiq'q)
— (=1l a LC L N C N0Y (|1 C 10V O |
(Vg et Vel Gl GGl 10) E11C, e
Ry (aiq’q))2 5 5
e 20 (LI 102G )2 E.2
+( pen ) ISR URATSAIY (B2)
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For jj coupling scheme, we switch off the relativistic energy corrections. As well as the case

of LSJM scheme, substitutinbg /, = 0 and j, = 1/2 to the function By, Eq. (D.3),

o, —1)stk+ii Ja Jo Kk ly, s
By.s(aiqq’) = 5%L{ ! }{ T (L |C ) (] [ Cr[0),

22k+1) | L g T Ja k1o

' —1)sthtie | 4, Lk l, s j
Buy(aidq) = b, L) e eVl

2(2k+1) Jqg Ji J Ji k1

The function M;(aiqq'), Eq. (56¢), is reduced to

.oy 7(—1)° b | Bu(aiqq’) Ja Jq li lg S Jg
Mj(aiqq) = (-1t | ———= (La]|C 1) (]| €3, 110)
J \/5 V2li +1 % j’L J ja ll la lill'q l

S SR Rl (aiq’q) ja % la lq S jq
+ (1)l e (Lal|Ci, [10) (L[| Crg [12g)
V2T Gy g ] G e b '
Threfore, using Eqs. (3) and (4) in VMK 9. 8.

> (20 + 1)(2ja + 1)| M, (aigq)?

JJa
2
Ry, (CLZQQ) lg s Jq 2 2
LIC L) GO o
(Feer) A CTEATRUTCAY

= —Z 2ja +1)

+ 2(=1)e Ry, (aiqq') Ry, (aiq'q) | Ja % la lg s Jjg ly s 74
V20U +1 V2041 | g G0, il L, Ll

X (la]|C |[lg) (L] | 110) (lal | C, [[0) (L] | Cha | [1g)
2
Ry, (aiq'q) )y s g 2 9
b (Rt N RCALRUTATS
: Ry(aigd) \’
= 5 la Ci |1 lz 0
: ((%H) %H) @Gl 1Ci o)

_ 2(_1)—lqui(aiqq/) Ry, (aidq) | 5 Ja ly ly 5 Jq
Vai+1 V2 +1 la i Ji Ji la 1
% {lallCu lig) (L1 C,110) (al 1o, 110) (il | i, 1)

ot il i

2
} (lal 11, 110)* (il | Ci 1) ®
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Now let us recover the rate in LSJM scheme starting from this formula. For a given value
of 1;, we have to take into account two values of j+ = |l; - %| For the each value of j;
bears totally 2j; + 1 degeneracies. The same is also applied to j, and j,. Multiplying
(27; + 1)(2j, + 1)(2j, + 1) to the both side, and summing over j;, j,, and j,,

D 2+ D2y + D)2y + 1) Y (27 + 1)(2a + 1) My (aigq)?

Jidadg Tia

Rl- (anq,> ) ? 2 2
— e la||Cy, |1 L1 Ch [0

_, Ry, (aiqq’) Ry, (aid'q
= (- ) B ) G Call0) G0 1)

- (—Rla“"'qq’)) <za||cla||o>2<zz-||cza||lq>2]. (E3)

= 47?

V2, +1

We find that the Egs. (E.2) and (E.3) are identical. The total number of the orbitals for j;
is
lg+3

Z (2jg +1) = 4g+2 (ly #0),

. 1
]q:|lq—§|

The total occupation number for the subshell j, is

> N, =N, (E.4)
Jq
Introducing the quantity Ny, , defined as

(qu le]) (qu/ qu’) ququ/

N, = = (inequivalent electrons)
2@+ D] [ @i+ 1] 22

Nu(N, —1
_ lq(+) (equivalent electrons). (E.5)

Let N; be the number of the holes in the subshell 7. Then, the prefactor for the rate is

Ni WNiNq ,
-y (E.6)

L L ——
B DO ) R T

This is identical to the prefactor in LSJM scheme.
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